

Instituto Federal de Educação, Ciência e Tecnologia da Paraíba

COORDENAÇÃO DO CURSO SUPERIOR DE BACHARELADO EM ENGENHARIA CIVIL

REGINA MARIA PEREIRA DE SOUZA

CONSIDERAÇÕES A RESPEITO DA UTILIZAÇÃO DE PÓRTICOS PLANOS E PÓRTICOS ESPACIAIS NA ANÁLISE DE ESTRUTURAS DE CONCRETO ARMADO

REGINA MARIA PEREIRA DE SOUZA

CONSIDERAÇÕES A RESPEITO DA UTILIZAÇÃO DE PÓRTICOS PLANOS E PÓRTICOS ESPACIAIS NA ANÁLISE DE ESTRUTURAS DE CONCRETO ARMADO

Trabalho de Conclusão de Curso submetido à Coordenação do Curso de Bacharelado em Engenharia Civil do Instituto Federal de Educação, Ciência e Tecnologia da Paraíba-Campus Cajazeiras, como parte dos requisitos para a obtenção do Título de Bacharel em Engenharia Civil, sob Orientação do Prof. Daniel Torres Filho.

Dados Internacionais de Catalogação na Publicação (CIP) – Thiago Cabral CRB15 - 628
S729c
SOUZA, Regina Maria Pereira de
Considerações a respeito da utilização de pórticos planos e pórticos espaciais na análise de estruturas de concreto armado. Regina Maria Pereira de Souza Cajazeiras, 2020 136f
TCC (PDF)
Orientador: Daniel Torres Filho
1. Estrutura. 2. Concreto. 3. Análise de Estruturas. I. Regina Maria Pereira de Souza. II. Título.
CDU: 625
Ficha catalográfica elaborada pelo Departamento de Bibliotecas DBIBLIO/IFPB

REGINA MARIA PEREIRA DE SOUZA

CONSIDERAÇÕES A RESPEITO DA UTILIZAÇÃO DE PÓRTICOS PLANOS E PÓRTICOS ESPACIAIS NA ANÁLISE DE ESTRUTURAS DE CONCRETO ARMADO

Trabalho de Conclusão de Curso submetido à Coordenação do Curso de Bacharelado em Engenharia Civil do Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, como parte dos requisitos para a obtenção do Título de Bacharel em Engenharia Civil.

Aprovado em 09 de Dezembro de 2020.

BANCA EXAMINADORA

Daniel Torres Filho – IFPB-Campus Cajazeiras Orientador

Mateus Rodrigues da Costa – IFPB-*Campus* Cajazeiras Examinador 1

Sebastião Simão da Silva – IFPB-*Campus* Cajazeiras Examinador 2

AGRADECIMENTOS

A Deus, por ter me dado força para enfrentar as muitas batalhas travadas ao longo desses cinco anos. Por colocar em meu caminho pessoas maravilhosas, que colaboraram para o meu crescimento.

Aos meus pais, Antonio Pereira da Costa e Maria Edilene Pereira de Souza, por sempre lutarem pelo desenvolvimento dos filhos e por sempre me apoiarem.

Aos meus irmãos, Rodolpho, Leonardo e Letícia, por sempre estarem presentes e nunca me desamparar.

Ao professor Daniel, por todo conhecimento compartilhado, pela paciência e pelo auxílio ao longo desse período.

Aos meus amigos, Jonas e Ranyelson, que compartilhamos tantas alegrias e momentos de desespero nos finais de período. Obrigada pela amizade e pelos puxões de orelha.

A minha amiga, Danyelle, por sempre estar presente e me apoiar, nunca me deixando desanimar.

RESUMO

Com o intenso processo de verticalização dos edifícios, surgiu a necessidade de realizar estudos

mais precisos sobre o comportamento das estruturas, elencando um maior número de variáveis,

tais como: propriedades dos matérias, distribuição dos esforços, admissão da ação do vento,

deslocamentos, entre outros. Nesse contexto, o presente trabalho apresenta uma proposta para

a análise dos esforços atuantes em edificações distintas, sendo admitido dois tipos de modelos

estruturais: Pórtico Plano e Pórtico Espacial. Os objetos de estudos consistem em duas

edificações, uma dispondo de simetria em planta e a outra apresentando uma planta assimétrica.

Para a realização dos estudos, fez-se simulações numéricas empregando o SAP 2000, um

software que adota o método dos elementos finitos. A avaliação final foi executada com base

nos dados coletados com a modelagem numérica, elencando-se os esforços atuantes em cada

pilar, considerando os dois objetos de estudo e os modelos empregados. Em posse desses

valores, buscou-se realizar comparativos entre os resultados obtidos.

Palavras-Chave: Análise estrutural; Esforços; Pórticos.

ABSTRACT

The intense process of verticalization of buildings has demanded the need of doing more

accurate studies on the behavior of structures describing a greater number of variables, such as:

properties of materials, distribution of strains, admission of the wind action, displacements and

others. In such context, the present work presents a proposal for the analysis of efforts in two

buildings with two types of structural models admitted: Flat Portico and Spatial Portico. The

objects consist of two buildings, the first one is symmetry in plan and the second one is

asymmetric plan. For the studies numerical simulations were performed using the SAP 2000, a

software that adopts the finite element method. The final evaluation has been executed based

on the data collected with the numerical modeling that described the strains active in each pillar

considering the two objects of study and the models used. With such values, It has made

comparisons between the results obtained.

Keywords: Structural Analysis; Strains; Porticos.

LISTA DE ILUSTRAÇÕES

Figura 2.1 - Densidade de probabilidade da resistência à compressão do concreto	24
Figura 2.2 - Diagrama tensão-deformação do concreto à compressão simples	26
Figura 2.3 - Seção transversal da laje.	29
Figura 2.4 - Áreas de influência dos pilares.	31
Figura 2.5 - Quatro níveis de abstração referentes a uma estrutura na análise estrutural	32
Figura 2.6 - Diagrama tensão versus deformação.	34
Figura 2.7 - Diagrama tensão versus deformação de um material não-linear.	35
Figura 2.8 - Barra vertical submetida a ações vertical e horizontal.	36
Figura 2.9 - Reações na barra vertical indeformada.	37
Figura 2.10 - Reações na barra vertical indeformada.	37
Figura 2.11 - Modelo de viga contínua.	39
Figura 2.12 - Modelo estrutural do Pórtico H.	40
Figura 2.13 - Modelo de grelha somente de vigas.	41
Figura 2.14 - Modelo de grelha de vigas e lajes.	42
Figura 2.15 - Modelo de pórtico plano.	42
Figura 2.16 - Pórtico espacial.	43
Figura 2.17 - Isopletas da velocidade básica (m/s)	49
Figura 2.18 - Fator topográfico S ₁ (z)	50
Figura 2.19 - Coeficiente de arrasto, Ca, para edificações paralelepípedas em vento de baix	(a
turbulência.	53
Figura 2.20 - Coeficiente de arrasto, Ca, para edificações paralelepípedas em vento de alta	
turbulência.	54
Figura 2.21 - Demonstração do Coeficiente γz.	64
Figura 3.1 - Planta baixa do pavimento tipo da Edificação Simétrica (Sem escala)	67
Figura 3.2 - Planta baixa do pavimento tipo da Edificação Assimétrica (Sem escala)	68
Figura 3.3 - Áreas de influência dos pilares pertencentes aos objetos de estudo	71
Figura 3.4 - Indicação dos trechos rígidos nos pórticos espaciais	74
Figura 4.1 - Planta de Fôrma do Pavimento Tipo - Edifício Simétrico (sem escala)	77
Figura 4.2 - Planta de Fôrma do Pavimento Tipo - Edifício Assimétrico (sem escala)	78
Figura 4.3 - Representação dos Pórticos Espaciais com grelhas	83
Figura 4.4 - Representação dos Pórticos Planos na direção x.	84
Figura 4.5 - Representação dos Pórticos Planos na direção y.	84

Figura 4.6 - Esforços axiais nos pilares do pavimento térreo (Combinação 01) - Edifício	
Simétrico	85
Figura 4.7 - Esforços axiais nos pilares do pavimento térreo (Combinação 01) - Edifício	
Assimétrico	85
Figura 4.8 - Variações dos carregamentos axiais no Pilar 02 - Edifício Simétrico	87
Figura 4.9 - Variações dos carregamentos axiais no Pilar 05 - Edifício Simétrico	88
Figura 4.10 - Variações dos carregamentos axiais no Pilar 18 - Edifício Simétrico	89
Figura 4.11- Variações dos carregamentos axiais no Pilar 02 - Edifício Assimétrico	90
Figura 4.12 - Variações dos carregamentos axiais no Pilar 10 - Edifício Assimétrico	91
Figura 4.13 - Variações dos carregamentos axiais no Pilar 14 - Edifício Assimétrico	91

LISTA DE TABELAS

Tabela 2.1 - Classes de resistência de concretos estruturais	25
Tabela 2.2 - Parâmetro associado ao tipo de agregado	26
Tabela 2.3 - Classes de agressividade ambiental (CAA)	27
Tabela 2.4 - Correspondência entre a classe de agressividade ambiental e o cobrimento	
nominal para	28
Tabela 2.5 - Coeficientes de majoração da força normal.	31
Tabela 2.6 - Parâmetros meteorológicos	52
Tabela 2.7 - Valores mínimos do fator estatístico S3	52
Tabela 2.8 - Coeficiente $\gamma f = \gamma f1 * \gamma f3$.	59
Tabela 2.9 - Valores do coeficiente γf2	59
Tabela 4.1 - Resumo das espessuras e massas específicas dos elementos com cargas	
permanentes	79
Tabela 4.2 - Determinação das combinações para ELU	80
Tabela 4.3 - Distribuição dos carregamentos na direção x, considerando pórticos planos -	
Edificação Simétrica	80
Tabela 4.4 - Distribuição dos carregamentos na direção y, considerando pórticos planos -	
Edificação Simétrica	81
Tabela 4.5 - Distribuição dos carregamentos na direção x, considerando pórticos planos -	
Edificação Assimétrica	81
Tabela 4.6 - Distribuição dos carregamentos na direção y, considerando pórticos planos -	
Edificação Assimétrica	82
Tabela 4.7 - Pressão dinâmica do vento.	83
Tabela 4.8 – Variações dos carregamentos axiais nos pilares 02, 05 e 18 – Edifício Simétr	ico.
	87
Tabela 4.9 - Variações dos carregamentos axiais nos pilares 02, 10 e 14 – Edifício	
Assimétrico	90
Tabela 4.10 – Parâmetro γ _Z - Edifício Simétrico	92
Tabela 4.11 – Parâmetro γ _Z - Edifício Assimétrico	92

LISTA DE ABREVIATURAS E SIGLAS

ABNT – Associação Brasileira de Normas Técnicas

NBR- Norma Brasileira

CAA – Classe de Agressividade Ambiental

CEB - Comité Euro- Internacional Do Béton

DIN – Deutsches Institut für Normung

ELS – Estado-Limite Último

ELU – Estado-Limite Último

NLF – Não-Linearidade Física

NLG – Não-Linearidade Geométrica

LISTA DE SÍMBOLOS

- F_c Resistência do concreto à compressão simples
- f_{ck} Resistência característica do concreto.
- f_{cm} Resistência média a compressão de compressão
- S Desvio padrão das resistências
- f_{ci} Valores genéricos de resistência
- n Número de corpos de prova
- E_c Módulo de elasticidade inicial
- α_E Parâmetro associado ao tipo de agregado
- Ecs Módulo de elasticidade secante
- α_i Coeficiente adimensional
- c_{min} Cobrimento mínimo
- c_{nom} Cobrimento nominal
- Δc Tolerância de execução adicionada ao cobrimento mínimo
- h Espessura da laje
- d Altura útil da laje
- ϕ Diâmetro das barras
- dest Altura útil da laje
- n Número de bordas engastadas
- $l_{\rm x}$ Menor vão
- $l_{\rm y}$ Maior vão
- M₁ Momento de primeira ordem
- M₂ Momento de segunda ordem
- V_k Velocidade característica do vento
- V₀ Velocidade básica do vento
- S₁ Fator topográfico
- S₂ Fator meteorológico
- S₃ Fator estatístico
- z Altura acima do nível do terreno
- F_r Fator de rajada para o terreno de categoria II
- b e p Parâmetros meteorológicos
- q Pressão dinâmica do vento
- Fa Força de arrasto

Ca – Coeficiente de arrasto

A_e – Área efetiva, que corresponde a projeção ortogonal da edificação, sobre um plano perpendicular à direção do vento.

ε_e – Deformação elástica do elemento estrutural

ε_p – Deformação plástica do elemento estrutural

F_d – Valor de cálculo das ações para combinação última

F_{gk} – Valor característico das ações permanentes

 $F_{\epsilon k}$ – Representa as ações indiretas permanentes com retração $F_{\epsilon gk}$ e variáveis como a temperatura $F_{\epsilon qk}$

F_{qk} - Representa as ações variáveis diretas das quais Fq1k é escolhida como principal

 γ_g , $\gamma_{\epsilon g}$, γ_q , $\gamma_{\epsilon q}$ – Valores indicados na Tabela 11.1 (p.65) da NBR 6118 (ABNT, 2014)

 $\psi_{0j},\,\psi_{0\epsilon}-Valores$ indicados na Tabela 11.2 (p.65) da NBR 6118 (ABNT, 2014)

F_{d,ser} - Valor de cálculo das ações para combinações de serviço

ψ₂ - Fator de redução de combinação quase permanente para ELS

F_{q1k} - Valor característico das ações variáveis principais diretas

ψ₁ - Fator de redução de combinação frequente para ELS

F_{q1exc} - Ação excepcional atuante na estrutura

α – Parâmetro de estabilidade

n – Número de andares acima da fundação ou de um nível pouco deslocável do subsolo

H_{tot} – Altura total da estrutura, medida a partir do topo da fundação ou de um nível pouco deslocável do subsolo

N_k – Somatório de todas as cargas verticais atuantes na estrutura, com seu valor característico

E_{cs}I_c – Somatório dos valores de rigidez de todos os pilares na direção considerada

γ_z – Coeficiente de avaliação dos esforços de segunda ordem

M_{1,tot,d} – Momento de tombamento

 $\Delta M_{tot,d}$ – Soma dos produtos de todas as forças verticais atuantes na estrutura, na combinação considerada, com seus valores de cálculo, pelos deslocamentos horizontais e seus respectivos pontos de aplicação, obtidos da análise de 1ª ordem

SUMÁRIO

1.	INT	RODUÇÃO	20
1	1.1	OBJETIVOS	22
	1.1.1	Objetivo Geral	22
	1.1.2	Objetivos Específicos	22
]	1.2	ESTRUTURA DA PESQUISA	22
2.	REV	ISÃO DE LITERATURA	24
2	2.1	PROPRIEDADES DO CONCRETO ARMADO	24
	2.1.1	Resistência do concreto à compressão	24
	2.1.2	Classes de resistência	25
	2.1.3	Módulo de deformação longitudinal	25
	2.1.4	Agressividade do ambiente	27
	2.1.5	Qualidade do concreto de cobrimento	28
2	2.2	PRÉ-DIMENSIONAMENTO DOS ELEMENTOS ESTRUTURAIS	28
	2.2.1	Pré-dimensionamento para as lajes	29
	2.2.2	Pré-dimensionamento para as vigas	30
	2.2.3	Pré-dimensionamento para os pilares	31
2	2.3	ANÁLISE ESTRUTURAL	32
	2.3.1	Análise linear	33
	2.3.2	Análise linear com redistribuição	34
	2.3.3	Análise plástica	34
	2.3.4	Análise não-linear	35
	2.3	3.4.1 Não-linearidade física (NLF)	36
	2.3	3.4.2 Não-linearidade geométrica (NLG)	36
	2.3.5	Análise através de modelos físicos	38
,) 1	MODELOS ESTRUTURAIS	38

2.4.1	Modelo de vigas contínuas	39
2.4.2	Modelo do pórtico H	40
2.4.3	Modelo de grelha somente de vigas	41
2.4.4	Modelo de grelha de vigas e lajes	41
2.4.5	Pórtico plano	42
2.4.6	Pórtico espacial	43
2.5 N	MÉTODOS DOS ESTADOS-LIMITES	44
2.5.1	Estados-limites últimos (ELU)	45
2.5.2	Estados-limites de serviço (ELS)	45
2.6 A	AÇÕES	45
2.6.1	Tipos de ações	46
2.6.	.1.1 Ações permanentes	46
2.6.	.1.2 Ações variáveis	46
2.6.	.1.3 Ações excepcionais	47
2.6.2	Ações devido ao vento	47
2.6.	.2.1 Cálculo da velocidade do vento	48
2.6.	.2.2 Força de arrasto e coeficiente de arrasto	53
2.6.3	Combinações das ações	54
2.6.	.3.1 Combinações últimas das ações	55
2.6.	.3.2 Combinações de serviço das ações	57
2.6.4	Coeficientes de ponderação das ações	58
2.6.	.4.1 Coeficientes de ponderação das ações no estado-limite último (ELU)	58
2.6.	.4.2 Coeficientes de ponderação das ações no estado-limite de serviço (ELS)	59
2.7 A	ANÁLISE DA ESTABILIDADE GLOBAL E EFEITOS DE SEGUNDA ORDE	М
ϵ	50	
2.7.1	Parâmetro de instabilidade (α)	61
2.7.2	Coeficiente γ _Z	63

3. M	ETODOLOGIA	66
3.1	DELINEAMENTO DA PESQUISA	66
3.2	OBJETOS DE ESTUDO	66
3.3	CONSIDERAÇÕES PRELIMINARES	69
3.4	CONCEPÇÃO ESTRUTURAL E PRÉ-DIMENSIONAMENTO DOS	
ELE	MENTOS ESTRUTURAIS	69
3.5	DESCRIÇÃO DA DETERMINAÇÃO DAS AÇÕES E COMBINAÇÕES	71
3.6	DESCRIÇÃO DA MODELAGEM NUMÉRICA	73
3.6	6.1 Considerações para a modelagem dos Pórticos Espaciais	73
3.6	5.2 Considerações para a modelagem dos Pórticos Planos	74
3.7	CÁLCULO DO PARÂMETRO γ _Z	75
4. Al	NÁLISES E DISCUSSÕES DOS RESULTADOS	76
4.1	RESULTADOS DO PRÉ-DIMENSIONAMENTO E DETALHAMENTO	76
4.2	RESULTADOS DO LEVANTAMENTO DAS AÇÕES	79
4.2	2.1 Distribuição dos esforços verticais nos Pórticos Planos	80
4.2	2.2 Distribuição dos esforços verticais nos Pórticos Espaciais	82
4.2	2.3 Distribuição dos esforços da ação do vento	82
4.3	RESULTADOS DA MODELAGEM NUMÉRICA	83
4.3	3.1 Determinação dos modelos nas simulações	83
4.3	3.2 Comparativos entre os esforços dos pórticos planos e pórticos espaciais	84
4.4	ANÁLISE DOS PILARES	86
4.4	4.1 Análise dos pilares da Edificação Simétrica	86
4.4	4.2 Análise dos pilares da Edificação Assimétrica	89
4.5	ANÁLISE DO PARÂMETRO γz	92
5. CO	ONSIDERAÇÕES FINAIS	94
REFE	RÊNCIAS	95
	DICE A – Pré-dimensionamento das lajes	

APÊNDICE B – Pré-dimensionamento das vigas99
APÊNDICE C – Pré-dimensionamento dos pilares do Edifício Simétrico100
APÊNDICE D – Pré-dimensionamento dos pilares do Edifício Assimétrico101
APÊNDICE E – Determinação da ação do vento a 0º nos nós dos pilares e momento de
tombamento para a Edificação Simétrica102
APÊNDICE F – Determinação da ação do vento a 90º nos nós dos pilares e momento de
tombamento para a Edificação Simétrica104
APÊNDICE G – Determinação da ação do vento a 0º nos nós dos pilares e momento de
tombamento para a Edificação Assimétrica105
APÊNDICE H – Determinação da ação do vento a 90º nos nós dos pilares e momento de tombamento para a Edificação Assimétrica
APÊNDICE I – Cargas axiais nos pilares dos pórticos planos – Edificação Simétrica. 108
APÊNDICE J - Cargas axiais nos pilares do pórtico espacial – Edificação Simétrica 111
APÊNDICE K – Variação das cargas axiais entre os pórticos plano e espacial -
Edificação Simétrica114
APÊNDICE L – Cargas axiais nos pilares dos pórticos planos – Edificação Assimétrica. 117
APÊNDICE M - Cargas axiais nos pilares do pórtico espacial — Edificação Assimétrica. 120
APÊNDICE N – Variação das cargas axiais entre os pórticos plano e espacial -
Edificação Assimétrica123
APÊNDICE O – Deslocamentos horizontais provenientes da ação do vento nos pórticos
planos - Edificação Simétrica126
APÊNDICE P – Deslocamentos horizontais provenientes da ação do vento nos pórticos
espaciais - Edificação Simétrica129
APÊNDICE Q – Deslocamentos horizontais provenientes da ação do vento nos pórticos
planos - Edificação Assimétrica132
APÊNDICE R – Deslocamentos horizontais provenientes da ação do vento nos pórticos
espaciais - Edificação Assimétrica135

1. INTRODUÇÃO

Segundo Lacerda et al. (2014a), o intenso processo da verticalização das edificações, que culminou em edifícios mais altos e esbeltos, seria resultado do crescente aumento da densidade populacional ligada a necessidade constante de uma maior urbanização das cidades e da carência do melhor aproveitamento do espaço. Em decorrência desta nova realidade, tornou-se de extrema necessidade o desenvolvimento de técnicas e softwares destinados a elaborar uma análise precisa de todo o comportamento da estrutura a partir de várias considerações, tais como: as ações solicitantes e resistentes, o tipo de material empregado e o comportamento do solo, sendo estes fatores desprovidos de estudos adequados alguns anos atrás.

Antes do advento do avanço tecnológico e da modernização dos computadores, a elaboração dos projetos estruturais de edifícios era realizada manualmente, demandando uma grande quantidade de cálculos e longos períodos de tempo. Segundo Barboza (2008), nessa época, o modelo de análise consistia em subdividir a estrutura em elementos mais simples e isolados, elaborando-se sua separação em lajes, vigas e pilares. Essa metodologia gerava uma simplificação da análise e facilitava a determinação dos esforços solicitantes, porém, normalmente, desprezava-se a ação das forças horizontais do vento, devido à complexidade do estudo.

Para Freitas (2016), nos últimos anos o Brasil alcançou grandes avanços nos âmbitos da elaboração de projetos, graças ao desenvolvimento de softwares destinados a auxiliar engenheiros durante todo o processo de dimensionamento das estruturas de forma eficiente e segura, assim como, na área de execução, com a aplicação de novas técnicas e tecnologias empregadas no setor da construção, com o intuito de otimizar os processos.

Ainda de acordo com o autor supracitado, ao elaborar a concepção estrutural de um determinado elemento, o engenheiro precisa mentalizar vários aspectos, que irão influenciar diretamente nos resultados finais do projeto, tais como: garantir a funcionalidade e estética do projeto arquitetônico, conhecer os esforços atuantes e o comportamento da estrutura, garantir a segurança e ter uma ideia dos custos de implementação.

Segundo a NBR 6118 (ABNT, 2014), o objetivo da análise estrutural consiste em determinar os efeitos das ações em uma estrutura, com a finalidade de efetuar verificações dos estados-limites últimos e de serviço. Em síntese, a elaboração de uma análise estrutural pode apresentar uma grande complexidade, solicitando uma alta atividade computacional. Nesse contexto, são elaboradas, comumente, simplificações nos desenvolvimentos dos cálculos com

o intuito de facilitá-los, respeitando o funcionamento dos modelos estruturais adotados e as normas que os regem.

Como ressalta França Junior (2015), no desenvolvimento da análise estrutural de um edifício é necessário se basear em um modelo estrutural que envolva todas as hipóteses físicas necessárias e condizentes a estrutura real. E esses modelos podem ser mais simples ou mais complexos, dependendo do grau de precisão solicitado pelo pesquisador ou projetista.

Para o desenvolvimento do estudo apresentado no decorrer deste texto, optou-se por empregar os modelos de pórticos planos e os pórticos espaciais. O primeiro é definido por Kimura (2007), como o modelo direcionado para a análise do comportamento global de um edifício, e não apenas de um único pavimento, admitindo tanto a aplicação de ações verticais quanto horizontais. Já em relação ao segundo, Fontes (2005) afirma que este modelo é composto por elementos lineares com ligações rígidas, semi-rígidas ou flexíveis, sendo uma melhor modelagem alcançada com a inserção de trechos rígidos nas ligações entre as barras.

O avanço tecnológico apresentou contribuições cada vez maiores para o desenvolvimento de análises mais precisas e próximas da realidade, simulando o comportamento das estruturas e os efeitos dos esforços atuantes. Segundo Chávez (2006), a tecnologia computacional permitiu que estudos mais precisos fossem realizados na concepção de projetos da engenharia estrutural, sendo possível que edifícios cada vez mais altos e esbeltos fossem construídos.

"O programa irá processar a rotina de cálculo para o que nele foi modelado conforme o método configurado em seu banco de dados" (CHAGAS, 2012, p.10). Salientando que cabe ao engenheiro elaborar toda a modelagem dos elementos, interpretando os resultados obtidos com o programa e verificando se eles estão em conformidade com as normas.

Entre os vários softwares empregados na análise estrutural é possível citar o SAP 2000 que utiliza no Método dos Elementos Finitos (MEF). Segundo Melo (2016), este software é um programa bastante flexível, onde é possível modelar vigas simples, pórticos complexos em 3D, estruturas laminares como lajes e cascas, e estruturas tridimensionais como treliças espaciais. Ainda de acordo com o autor, esta ferramenta computacional permite fazer considerações sobre variados tipos de carregamentos, efeitos dinâmicos, efeitos da temperatura e de pressões, estudar os esforços oriundos de deslocamentos, assim como, simular o comportamento do concreto protendido.

Diante das problemáticas envolvendo a análise estrutural, a complexidade da estrutura pode conduzir o projetista à adoção dos modelos de análise mais sofisticados. No caso de

edifícios mais complexos se torna impraticável a utilização de modelos de análise mais simplórios, visto que os resultados podem divergir muito da realidade. Nos casos de edifícios de pequena altura e que apresentam simetria em planta, os modelos mais simples de análise podem trazer resultados considerados satisfatórios.

Nesse contexto, espera-se que este estudo possa estabelecer correlações entre os resultados de análises através do uso de diferentes modelos, mais precisamente através do uso de pórticos planos e espaciais. Para isso serão adotados dois exemplos de edifícios, um que apresenta simetria em planta e outro que apresenta assimetria em uma direção da sua planta. Na análise serão mantidas as mesmas características quanto aos materiais utilizados, localidade e número de pavimentos.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Analisar o comportamento de edifícios através da utilização de modelos estruturais em pórtico plano e pórtico espacial, aplicados em edificações com características distintas, uma apresentando simetria em planta e outro com planta assimétrica.

1.1.2 Objetivos Específicos

- Obter as ações atuantes nas edificações;
- Analisar a instabilidade global e efeitos de 2ª ordem dos objetos de estudo;
- Alocar e analisar os pórticos planos e espaciais que compõe as estruturas;
- Simular o comportamento dos esforços atuantes na edificação para os modelos estruturais estudados, empregando software SAP 2000;
- Elaborar comparativos sobre o comportamento dos esforços nas duas edificações, considerando os tipos de pórticos utilizados, analisando especificamente os pilares.

1.2 ESTRUTURA DA PESQUISA

Este trabalho consiste em uma descrição de todas as considerações realizadas e do processo de estudo desenvolvido para a execução da análise da distribuição de esforços nos

objetos de estudo selecionados, empregando modelos estruturais distintos.

No capítulo 2 deste estudo, é apresentada a revisão da literatura, dispondo dos conceitos necessários para o entendimento desta pesquisa, tais como, uma abordagem dos tipos de análises estruturais, as diferentes concepções de modelos estruturais, os tipos de ações atuantes em uma estrutura e o estudo da análise da estabilidade global.

O capítulo 3 apresenta a metodologia empregada para o desenvolvimento deste estudo, desde as considerações iniciais e descrição dos cálculos realizados, até o desenvolvimento da simulação numérica.

Na sequência, o capítulo 4 aborda todos os resultados provenientes dos cálculos realizados e das análises computacionais. E por fim, o capítulo 5 dispõe das considerações finais acerca do trabalho.

2. REVISÃO DE LITERATURA

2.1 PROPRIEDADES DO CONCRETO ARMADO

2.1.1 Resistência do concreto à compressão

Tem-se que a resistência a compressão é definida através de ensaios empregando corpos de prova, sendo esses moldados em conformidade com a NBR 5738 (ABNT, 2015) e rompidos segundo a NBR 5739 (ABNT, 2018). Normalmente, adota-se corpos de prova cilíndricos, que dispõem de uma altura igual ao dobro do diâmetro.

De acordo com Araújo (2014a), devido a fatores de natureza aleatória obtém-se uma discrepância nos valores de resistência dos corpos de prova. Nesse contexto, admite-se que a resistência do concreto, f_c, corresponde a uma variável aleatória, devendo-se recorrer a Teoria das Probabilidades para realizar as análises, adotando-se, normalmente, que a função densidade de probabilidade das resistências seja definida através da curva de Gauss (ver Figura 2.1).

Densidade de probabilidade

Figura 2.1 - Densidade de probabilidade da resistência à compressão do concreto.

Fonte: ARAUJO (2014a).

Ainda de acordo com o autor supracitado, tem-se que através da curva abordada anteriormente, define-se a resistência média à compressão, f_{cm} , e a resistência característica à compressão, f_{ck} . Assim sendo, através da equação de distribuição normal de probabilidades, obtém-se que:

$$f_{ck} = f_{cm} - 1,645 \times S \tag{2.1}$$

Sendo o desvio padrão das resistências, S, calculado por:

$$S = \sqrt{\sum_{i=1}^{n} (f_{ci} - f_{cm})^2 / (n-1)}$$
 (2.2)

Em que:

- fci valores genéricos de resistência;
- n número de corpos de prova.

2.1.2 Classes de resistência

A NBR 8953 (ABNT, 2015), classifica os concretos para fins estruturais nos grupos I e II (ver Tabela 2.1), de acordo com a sua resistência característica à compressão.

Tabela 2.1 - Classes de resistência de concretos estruturais.

Classe de resistência Grupo I	Resistência característica à compressão (MPa)	Classe de resistência Grupo II	Resistência característica à compressão (MPa)
C20	20	C55	55
C25	25	C60	60
C30	30	C70	70
C35	35	C80	80
C40	40	C90	90
C45	45	C100	100
C50	50	C100	100

Fonte: Adaptado de NBR 8953 (ABNT, 2015).

2.1.3 Módulo de deformação longitudinal

Tem-se que o módulo de deformação longitudinal, também conhecido como módulo de Young, corresponde ao coeficiente de proporcionalidade entre a tensão e a deformação de um dado material.

De acordo com Araujo (2014a), o módulo de deformação longitudinal tangente, E_c , é representado pela inclinação da reta tangente à curva na origem do diagrama (ver Figura 2.2). De forma análoga, é definido o módulo secante, E_{cs} , que é indicado pela inclinação da reta que passa pela origem e corta o diagrama no ponto correspondente a tensão de $0.4f_c$, sendo f_c a resistência do concreto à compressão simples.

0,4f_c = 1 | E_{cs} | 0,4f_c = 1 | E_{cs} | 1 | E_{cs}

Figura 2.2 - Diagrama tensão-deformação do concreto à compressão simples.

Fonte: ARAUJO (2014a).

A NBR 6118 (ABNT, 2014), define as expressões para calcular o módulo de elasticidade inicial, caso não seja realizado o ensaio estabelecido pela NBR 8522 (ABNT, 2017), sendo elas:

$$E_c = \propto_E * 5600 * \sqrt{f_{ck}}$$
 para fck de 20 MPa a 50 MPa; (2.3)

$$E_c = 21.5 * 10^3 * \alpha_E * (\frac{f_{ck}}{10} + 1.25)^{1/3}$$
 para fck de 55 MPa a 90 MPa. (2.4)

Em que:

- E_c Módulo de elasticidade inicial;
- α_E Parâmetro associado ao tipo de agregado;
- f_{ck} resistência característica do concreto.

Salientando-se que o valor de α_E é definido de acordo com o tipo de agregado (ver Tabela 2.2).

Tabela 2.2 - Parâmetro associado ao tipo de agregado.

αΕ	Tipo de agregado
1,2	Basalto e diabásio
1,0	Granito e gnaisse
0,9	Calcário
0,7	Arenito

Fonte: Adaptado de NBR 6118 (ABNT, 2014).

A NBR 6118 (ABNT, 2014) apresenta ainda uma forma de estimar o módulo de deformação secante, dada por:

$$E_{cs} = \alpha_i * E_c \tag{2.5}$$

Sendo o coeficiente adimensional, α_i , obtido por:

$$\alpha_i = 0.8 + 0.2 * \frac{f_{ck}}{80} \le 1.0$$
 (2.6)

2.1.4 Agressividade do ambiente

De acordo com a NBR 6118 (ABNT, 2014), que a agressividade do meio ambiente está ligada às ações físicas e químicas atuantes na estrutura de concreto, independentemente das ações previstas em projeto, como as ações mecânicas, das variações volumétricas de origem térmica, da retração hidráulica, entre outras.

Nesse contexto, determina-se a classe de agressividade ambiental de acordo com as condições de exposição da estrutura (ver Tabela 2.3).

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
т	Fraca	Rural	Insignificants	
1	Fraca	Submersa	Insignificante	
II	Moderada	Urbana ^{a,b}	Pequeno	
TTT	Forte	Marinha ^a	Grande	
111	Forte	Industrial a,b		
IV	Muita fanta	Industrial a,c	Elayada	
1 V	Muito forte	Respingos de maré	Elevado	

Tabela 2.3 - Classes de agressividade ambiental (CAA).

Fonte: Adaptada de NBR 6118 (ABNT, 2014).

^a Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).

^b Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.

^c Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.

2.1.5 Qualidade do concreto de cobrimento

Segundo Carvalho e Figueredo Filho (2014), tem-se que a espessura do concreto de cobrimento nas armaduras corresponde ao fator que apresenta grande influência na durabilidade das estruturas de concreto armado e protendido.

A NBR 6118 (ABNT, 2014), estabelece o valor do cobrimento mínimo (c_{min}) que deve ser adotado, de modo que na elaboração do projeto e na sua execução deve-se considerar o cobrimento nominal (c_{nom}), que corresponde ao cobrimento mínimo acrescido de uma tolerância de execução (Δc), conforme é apresentado na Tabela 2.4.

Tabela 2.4 - Correspondência entre a classe de agressividade ambiental e o cobrimento nominal para $\Delta c = 10~{\rm cm}.$

	a .	Classe de agressividade ambiental			
Tipo de estrutura	Componente ou elemento	I	II	III	IV ^c
esti utui a	ciemento	Cobrimento nominal (mm)			
	Laje ^b	20	25	35	45
	Viga/pilar	25	30	40	50
Concreto armado	Elementos estruturais em contato com o solo ^d	3	0	40	50
Concreto	Laje	25	30	40	50
protendidoa	Viga/pilar	30	35	45	55

^a Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.

Fonte: Adaptada de NBR 6118 (ABNT, 2014).

2.2 PRÉ-DIMENSIONAMENTO DOS ELEMENTOS ESTRUTURAIS

Segundo Barboza (2008), tem-se que os sistemas estruturais podem ser compostos por apenas um tipo de elemento estrutural, ou por vários elementos, que corresponde a situação

^b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos, finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitando um cobrimento nominal ≥ 15 mm.

^c Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, caneletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos de classe de agressividade IV.

^d No trecho dos pilares em contato com o solo juntos aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

mais observada nas construções. Os elementos mais empregados consistem em vigas, pilares e lajes.

Normalmente, realiza-se o pré-dimensionamento dos elementos estruturais com o objetivo de nortear os cálculos iniciais da estrutura. Obviamente, os valores obtidos podem sofrer alterações, para que sejam capazes de atender a todas as solicitações impostas na edificação estudada.

2.2.1 Pré-dimensionamento para as lajes

Segundo Pinheiro (2007), tem-se que a espessura da laje pode ser definida matematicamente (ver Eq. 2.7), admitindo algumas características dimensionais para o elemento (ver Figura 2.3).

$$h = d + \frac{\phi}{2} + c_{nom} \tag{2.7}$$

Em que:

- d Altura útil da laje;
- ϕ Diâmetro das barras;
- c_{nom} Cobrimento nominal da armadura.

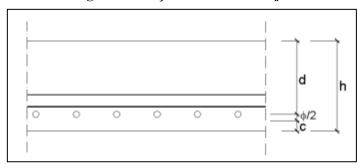


Figura 2.3 - Seção transversal da laje.

Fonte: PINHEIROS (2007).

Para definir a altura útil da laje o autor supracitado estabelece um método empírico, admitido para lajes que apresentam bordas apoiadas ou engastadas (ver Eq. 2.8).

$$d_{est} = (2.5 - 0.1 * n) * \frac{l'}{100}$$
(2.8)

Elaborando-se uma condição especial para l' dada por:

$$l' \le \begin{cases} l_x \\ 0.7 * l_y \end{cases} \tag{2.9}$$

Em que:

- n Número de bordas engastadas;
- l_x menor vão;
- l_y maior vão.

A NBR 6118 (ABNT, 2014) estabelece algumas considerações sobre os limites mínimos de espessura para lajes maciças. Estando tais observações presentes no item 13.2.4.1 da norma mencionada, sendo elas:

- a) 7 cm para cobertura não em balanço;
- b) 8 cm para lajes de piso em balanço;
- c) 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN;
- d) 12 cm para lajes que suportem veículos de peso total maior que 30 kN;
- e) 15 cm para lajes com protensão apoiada em vigas, com o mínimo de *l*/42 para piso biapoiadas e *l*/50 para lajes de piso contínuas;
- f) 16 cm para lajes lisas e 14 cm para lajes-cogumelo, fora do capitel.

2.2.2 Pré-dimensionamento para as vigas

Segundo Pinheiro (2008), é possível realizar uma estimativa grosseira das alturas das vigas, admitindo-se que:

Tramos internos:
$$h_{est} = \frac{l_0}{12}$$
 Tramos externos ou vigas biaboiadas:
$$h_{est} = \frac{l_0}{10}$$
 (2.10) Balanços:
$$h_{est} = \frac{l_0}{5}$$

Sendo l_0 o comprimento do tramo analisado.

2.2.3 Pré-dimensionamento para os pilares

Na metodologia proposta por Pinheiro (2008), é estabelecida a área de influência referente à cada pilar, e com esses valores estima-se as cargas absorvidas por esses elementos.

De acordo com o autor antes mencionado, as áreas de influência dos pilares são definidas arbitrando as distâncias entre os eixos de acordo com a posição do pilar (ver Figura 2.4). Caso trate-se de um pilar de extremidade ou de canto, na direção da sua menor dimensão, adota-se 0,45*l* e o seu complemento de 0,55*l*. Enquanto, para os pilares de extremidade ou de canto, na direção da sua maior dimensão, adota-se uma distância de 0,50*l*.

Figura 2.4 - Áreas de influência dos pilares.

Fonte: PINHEIROS (2007).

Após a coleta dos valores das áreas de influência, determina-se o coeficiente de majoração da força normal (α), que admite a excentricidade da carga (ver Tabela 2.5).

Tabela 2.5 - Coeficientes de majoração da força normal.

α	Situações dos pilares
1,3	Pilares internos ou de extremidade, na direção da maior dimensão
1,5	Pilares de extremidade, na direção da menor dimensão
1,8	Pilares de canto

Fonte: Adaptado de Pinheiros (2008).

Em posse dos dados anteriores, calcula-se a área da seção do pilar, admitindo a compressão simples com carga majorada pelo coeficiente α (ver Eq. 2.11).

$$A_c = \frac{30 * \times * A * (n+0.7)}{f_{ck} + 0.01 * (69.2 - f_{ck})}$$
(2.11)

A NBR 6118 (ABNT, 2014) estabelece que a seção transversal de pilares e pilaresparede maciços, deve apresentar a dimensão mínima de 19 cm, podendo-se empregar coeficientes de segurança caso seja necessário espessuras menores. Salientando que se deve adotar uma seção transversal mínima de 360 cm².

2.3 ANÁLISE ESTRUTURAL

"A Análise Estrutural é a parte da Mecânica que estuda as estruturas, consistindo este estudo na determinação dos esforços e das deformações a que elas ficam submetidas quando solicitadas por agentes externos" (SUSSEKIND, 1981, p. 01).

De acordo com Clímaco (2008), é através dessa análise que é possível efetuar um conjunto de simplificações adicionais, após uma avaliação inicial da edificação, com o objetivo de tornar o projeto estrutural exequível a partir de novas decomposições virtuais, subdividindo a estrutura em grupos de elementos estruturais mais simplórios, que possam ser estudados separadamente por modelos esquemáticos definidos pela Teoria das Estruturas.

Segundo a NBR 6118 (ABNT, 2014), a análise estrutural permite estabelecer as distribuições de esforços internos, tensões, deformações e deslocamentos, em uma parte ou em toda a estrutura. Os resultados irão depender do tipo de regime no qual a estrutura está sendo analisada. No caso de uma análise em regime linear, pode-se efetuar o dimensionamento dos elementos estruturais, determinando a sua seção e armadura, a partir dos esforços solicitantes obtidos, para a geometria indeformada e material obedecendo a lei de Hooke. Para o regime não linear, pode-se definir o comportamento do concreto ao mesmo tempo que ocorre a sua deformação e a sua interação com a armadura.

De acordo com Martha (2010), tem-se que para uma determinada estrutura a análise estrutural dispõe de quatro níveis de abstração (ver Figura 2.5).

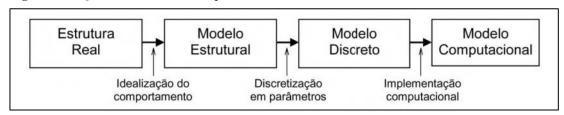


Figura 2.5 - Quatro níveis de abstração referentes a uma estrutura na análise estrutural.

Fonte: MARTHA (2010).

Segundo os preceitos do autor supracitado, tem-se que o primeiro nível (estrutura real) está associada ao nível físico, ou seja, a real situação na qual a estrutura está inserida e a forma como foi construída. O segundo nível (modelo estrutural) corresponde ao modelo analítico que é empregado para a representação matemática da estrutura, sendo este conceito melhor abordado no tópico 2.4. No terceiro nível (modelo discreto), ocorre a mudança da representação das soluções analíticas contínuas para valores discretos dos parâmetros adotados, que variam de acordo com o método empregado, podendo ser o Método das Forças (forças ou momentos) e o Método dos Deslocamentos (deslocamentos ou rotações). E por último, tem-se o modelo computacional, que consiste na simulação computacional do comportamento de estruturas, empregando softwares com grande precisão que geram resultados próximos da realidade.

A NBR 6118 (ABNT, 2014) estabelece métodos de análise estrutural, que se diferem de acordo com o comportamento admitido para os materiais constituintes da estrutura, não perdendo de vista em cada caso as limitações correspondentes.

2.3.1 Análise linear

Segundo a NBR 6118 (ABNT, 2014), na elaboração da análise linear admite-se o comportamento elástico-linear para os materiais, sendo os seus resultados utilizados, normalmente, para a verificação do estados-limite último e de serviço.

Ainda de acordo com a norma abordada anteriormente, tem-se que na análise global é possível determinar as características geométricas com base na seção bruta do concreto nos elementos estruturais. As análises locais devem ser consideradas nos cálculos dos deslocamentos, na eventualidade de fissurações.

Para Fontes (2005), a elasticidade de um material de um elemento estrutural está associada à sua tendência de voltar à sua configuração inicial após ter sofrido deformações decorrentes de ações externas, com posterior alívio de carregamento (ver Figura 2.6-a). O elemento pode ainda, estar parcialmente elástico, quando apenas uma parcela da deformação é revertida (ver Figura 2.6 -b).

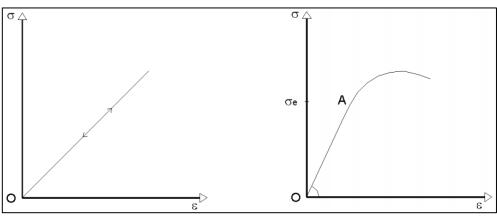


Figura 2.6 - Diagrama tensão versus deformação.

a) Material elástico perfeito e linear.

b) Material linear até o ponto A.

Fonte: FONTES (2005).

2.3.2 Análise linear com redistribuição

De acordo com a NBR 6118 (ABNT, 2014), na análise linear com redistribuição, os efeitos das ações, determinados em uma análise linear são redistribuídos na estrutura, para combinações de carregamento do estado limite último. Têm-se o cuidado de respeitar as condições de equilíbrio e de ductilidade.

"A fissuração, e a consequente entrada no estádio II¹, de determinadas seções transversais, provoca um remanejamento dos esforços solicitantes, para regiões de maior rigidez" (FONTES, 2005, p. 24). Tem-se como exemplo as vigas contínuas, que com o aumento gradativo do carregamento, pode-se gerar fissuras, iniciando-se pelos apoios que dispõem de momentos fletores mais elevados, ocorrendo posteriormente um aumento dos momentos atuantes nos vãos.

2.3.3 Análise plástica

Segundo Duarte (1998), na realização da análise plástica é admitido que o concreto trabalha na iminência da ruptura, ou seja, ele dispõe de um comportamento equivalente a uma fase posterior à da análise não-linear em seu diagrama tensão-deformação, em que ocorre o escoamento das armaduras e o progresso de linhas de plastificação ao longo da sua estrutura.

"A análise estrutural é denominada plástica quando as não linearidades puderem ser consideradas, admitindo-se materiais de comportamento rígido-plástico perfeito ou

¹Os estádios de cálculo correspondem aos vários estágios de tensão pelo qual um elemento fletido passa, desde o carregamento inicial até a ruptura. No estádio II, despreza-se a colaboração do concreto à tração (BASTOS, 2006).

elastoplástico perfeito" (NBR 6118, 2014, p. 85). Porém, este modelo dispõe de algumas limitações, não podendo ser empregado nos casos de efeitos de segunda ordem global e se a ductilidade dos elementos não for suficiente para as configurações empregadas.

Ao se aumentar continuamente a intensidade das solicitações sobre um determinado corpo, e após ser atingido o limite elástico de seu material constituinte, deformações permanentes aparecerão com o alívio do carregamento. Essa propriedade de guardar deformações residuais é chamada de plasticidade. A deformação total do elemento estrutural passa a ser composta por uma parcela recuperável elástica, ϵ_e , e uma parcela permanente plástica ϵ_p . (FONTES, 2005, p. 28)

2.3.4 Análise não-linear

De acordo com a NBR 6118 (ABNT, 2014), tem-se que na análise não-linear é admitido o comportamento não linear dos materiais. Onde toda a geometria da estrutura, incluindo suas armaduras, deve estar definida, já que, para esse tipo de estudo a resposta gerada pela estrutura estará diretamente relacionada com a forma que ela foi armada.

Segundo Fontes (2005), tem-se que um material é classificado como não-linear quando a relação entre tensões e deformações não apresenta linearidade (ver Figura 2.7). Um exemplo, seria o concreto que apresenta um comportamento não-linear, quando submetido a tensões de certa magnitude. "Esse comportamento é decorrente da microfissuração progressiva que ocorre na interface entre o agregado graúdo e a pasta de cimento" (ARAUJO, 2014a, p. 12).

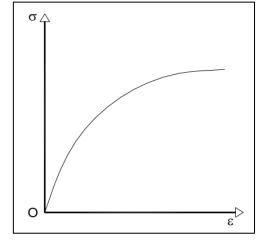


Figura 2.7 - Diagrama tensão versus deformação de um material não-linear.

Fonte: FONTES (2005).

Para Fontes (2005), os resultados obtidos com a análise não-linear estão associados a diversos fatores, porém, subdivide-se os mesmos em dois grupos: não-linearidade física (NLF) e não-linearidade geométrica (NLG).

2.3.4.1 Não-linearidade física (NLF)

Segundo Pinto e Ramalho (2002), na elaboração dos cálculos estruturais de uma edificação, o projetista deve admitir que o comportamento do material constituinte da estrutura, no caso do concreto armado, não é elástico perfeito, pois, o efeito da fissuração, da fluência e do escoamento das armaduras, confere ao mesmo um comportamento não linear, denominado não-linearidade física.

"A não-linearidade física caracteriza-se por causar relações não lineares entre tensão e deformação e pelo fato de a análise estrutural depender do caminho ou histórico de deformação do material" (LACERDA, 2014b, p. 09).

2.3.4.2 Não-linearidade geométrica (NLG)

De acordo com Lacerda (2014b), ao elaborar-se uma análise linear, as equações de equilíbrio são desenvolvidas a partir da geometria inicial da estrutura (antes de sofrer deslocamentos ou rotações). Caso o sistema estrutural sofra mudanças consideráveis em sua geometria, aquelas equações perdem a sua validade, sendo necessário a reformulação das mesmas, admitindo-se a perda de linearidade nas relações de deslocamento e deformação. Denomina-se este tipo de não linearidade como não-linearidade geométrica.

Com o objetivo de gerar uma melhor compreensão dos efeitos da não-linearidade geométrica, pode-se considerar uma barra vertical, suscetível à ação de forças vertical e horizontal (ver Figura 2.8).

F_H V l_e

Figura 2.8 - Barra vertical submetida a ações vertical e horizontal.

Fonte: MONCAYO (2011).

Em decorrência das ações atuantes surgem reações, mantendo a estrutura em equilíbrio e sem deformações iniciais (ver Figura 2.9). Entre as reações tem-se o momento M_1 , gerado pelo produto da força horizontal pelo o comprimento da barra, e por ser obtido com a barra em estado indeformado, é definido como momento de primeira ordem (conceito abordado no item 2.7).

 F_{V} F_{V} I_{e} $R_{H}=F_{H}$ $M_{1}=F_{H} \cdot I_{e}$ $R_{V}=F_{V}$

Figura 2.9 - Reações na barra vertical indeformada.

Fonte: MONCAYO (2011).

De acordo com Moncayo (2011), caso o equilíbrio seja considerado na posição deformada (ver Figura 2.10), ou seja, admitindo-se o deslocamento, u, devido a ação horizontal, é obtido um acréscimo de momento na base equivalente a $\Delta M = F_v * u$, aumentando-se o momento de primeira ordem M_1 , resultando no momento M_2 , que é dado pela soma do momento de 1^a ordem com o momento de 2^a ordem.

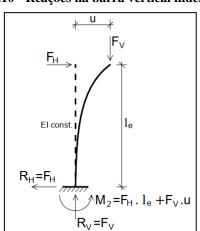


Figura 2.10 - Reações na barra vertical indeformada.

Fonte: MONCAYO (2011).

2.3.5 Análise através de modelos físicos

A NBR 6118 (ABNT, 2014) afirma que através da análise de modelos físicos pode-se determinar o comportamento estrutural, tendo-se como base ensaios realizados com modelos reais de concreto, considerando-se os critérios de semelhança mecânica, devendo a metodologia utilizada assegurar possibilidade da correta interpretação dos resultados gerados.

De acordo com Fontes (2005), tem-se que as semelhanças físicas entre o protótipo (estrutura real) e o modelo (estrutura reduzida) incluem as escalas relacionadas ao comprimento, massa e tempo. Salientando que o material utilizado no protótipo não precisa ser o mesmo empregado na estrutura real, desde que os resultados finais apresentem uma quantidade de similaridades aceitável.

Segundo Duarte (1998), deve-se realizar simulações em todos os Estados Limites Últimos e de Utilização que podem ser utilizados na análise da estrutura. Reproduzindo-se em laboratório as ações, condições e possíveis influências que possam acontecer ao longo da vida útil da estrutura.

2.4 MODELOS ESTRUTURAIS

Para que uma análise estrutural seja efetivamente realizada é necessário que seja adotado um modelo estrutural como base, sendo ele condizente com os objetivos do estudo.

A NBR 6118 (ABNT, 2014), define modelos estruturais como a composição de elementos estruturais básicos, formando sistemas estruturais resistentes que permitam representar de maneira clara todos os caminhos percorridos pelas ações até os apoios da estrutura.

Segundo Martha (2010), o modelo estrutural ou modelo analítico deve ser capaz de incorporar todas as teorias ou hipóteses elaboradas para descrever o comportamento da estrutura, em função das mais variadas solicitações. Essas hipóteses foram definidas com base em leis físicas, tais como: o equilíbrio entre forças e tensões, as relações de compatibilidade entre deslocamentos e deformações, e as leis constitutivas dos materiais que compõem a estrutura.

Ainda de acordo com a NBR 6118 (ABNT, 2014) tem-se que os elementos estruturais básicos são classificados e definidos de acordo com a sua forma geométrica e a sua função estrutural, sendo divididos em: elementos lineares e elementos de superfície. Os primeiros, fazem referência a aqueles que o comprimento longitudinal supera em pelo menos três vezes a

maior dimensão da seção transversal, sendo também denominados barras, que é o caso de vigas, pilares, tirantes e arcos. Os segundos, dizem respeito aos elementos em que uma dimensão, usualmente a espessura, é relativamente pequena em face das demais, como as placas, chapas e cascas.

2.4.1 Modelo de vigas contínuas

Este modelo foi bastante empregado e está entre os mais antigos utilizados na elaboração de análises estruturais. Trata-se de um estudo razoavelmente simplista, podendo-se efetuar os cálculos de forma manual, considerando principalmente, a atuação de forças verticais.

De acordo com Lins (2010), esse modelo consiste em isolar as vigas presentes em uma determinada edificação, que estão sujeitas a carregamentos verticais decorrentes do seu peso próprio, alvenarias, sobrecargas, lajes, entre outros. Porém, o modelo de vigas contínuas apresenta algumas limitações. Por estar inserido em um plano, não é possível prever os esforços da torção, podendo-se determinar apenas os momentos fletores e os esforços cortantes.

Para Benincá (2016), ao elaborar a análise de uma determinada viga isolada, considerase como apoios, pilares ou outras vigas. De modo que, as demais vigas apoiadas no elemento estudado, são consideradas como cargas verticais concentradas (ver Figura 2.11).

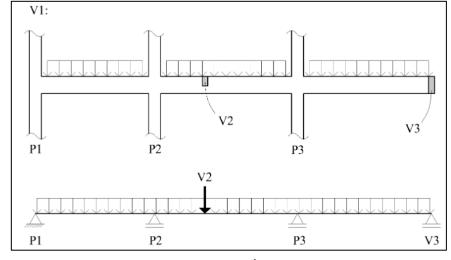


Figura 2.11 - Modelo de viga contínua.

Fonte: BENINCÁ (2010).

Ainda de acordo com o autor aludido, é de extrema importância que seja determinado qual viga se apoia em qual, para que a representação estrutural seja realizada adequadamente. Esta consideração representa apenas uma aproximação, tendo em vista, que na realidade ocorre

a transmissão de forças de mesmo módulo e sinal oposto, porém, estas forças podem ser bastante distintas das obtidas admitindo-se que uma das vigas seja um apoio perfeito, já que, as duas se deformam.

A NBR 6118 (ABNT, 2014), faz correções com relação ao emprego de vigas contínuas apoiadas em pilares, admitindo a atuação de cargas verticais, onde:

- a) N\u00e3o podem ser considerados momentos positivos menores que os que se obteriam se houvesse engastamento perfeito da viga nos apoios internos;
- b) Quando a viga for solidária com o pilar intermediário e a largura do apoio, medida na direção do eixo da viga, for maior que a quarta parte da altura do pilar, não pode ser considerado o momento negativo de valor absoluto menor do que o de engastamento perfeito nesse apoio;
- c) Quando não for realizado o cálculo exato da influência da solidariedade dos pilares com a viga, deve ser considerado, nos apoios extremos, momento fletor igual ao momento de engastamento perfeito multiplicado pelos coeficientes de rigidez do elemento no nó.

2.4.2 Modelo do pórtico H

O modelo estrutural do pórtico H trata-se de uma evolução do modelo abordado no item anterior, destinado para a análise de vigas. De acordo com Kimura (2007), em vez de haver apoios simples, ocorre a modelação dos lances inferior e superior em conjunto com a viga, resultando em um pórtico plano (ver Figura 2.12).

Figura 2.12 - Modelo estrutural do Pórtico H.

Fonte: KIMURA (2007).

2.4.3 Modelo de grelha somente de vigas

A grelha somente de vigas (ver Figura 2.13), "trata-se de um modelo direcionado para a análise estrutural de um pavimento, no qual é levada em conta a interação entre todas as vigas presentes no mesmo" (KIMURA, 2007, p. 117).

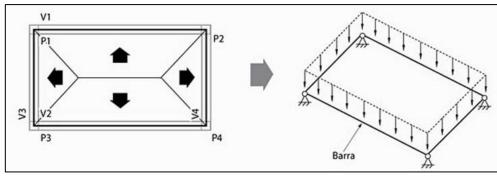


Figura 2.13 - Modelo de grelha somente de vigas.

Fonte: KIMURA (2007).

A Figura 2.13, ilustra o modelo antes relatado em que as barras dispostas no plano horizontal simulam o comportamento das vigas, que estão submetidas a cargas distribuídas verticais, e os apoios simples, indicam os pilares. Percebe que as lajes não são admitidas, sendo necessário fazer uma análise individual das mesmas.

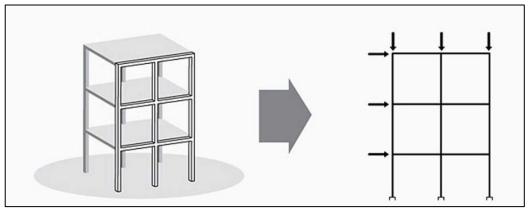
2.4.4 Modelo de grelha de vigas e lajes

Assim como o modelo anterior, este é destinado à análise estrutural de um pavimento. Neste caso, tem-se que as barras alocadas ao longo do plano horizontal simulam as vigas, os apoios simples representam os pilares e o plano horizontal indica a laje (ver Figura 2.14).

"As lajes podem ser satisfatoriamente modeladas como uma malha de barras, com rigidez à flexão e rigidez à torção referentes às das faixas de lajes por elas representadas" (FONTES, 2005, p. 16).

P1
L1
P2
P3
P4
Barra de laje

Figura 2.14 - Modelo de grelha de vigas e lajes.


Fonte: KIMURA (2007).

Com base na Figura 2.14, observa-se que a laje é subdivida em vários alinhamentos de barras, caracterizando a sua discretização.

2.4.5 Pórtico plano

Segundo Martha (2010), o pórtico plano ou quadro plano consiste em um modelo estrutural plano de uma estrutura tridimensional (ver Figura 2.15). Ou seja, esse modelo é equivalente a uma "fatia" da estrutura ou que representa uma simplificação do comportamento tridimensional.

Para Chagas (2012), este modelo é voltado para a análise global de um edifício, considerando as ações verticais e horizontais, sendo ele composto por barras verticais (pilares) e barras horizontais (vigas), não admitindo-se lajes.

 ${\bf Figura~2.15~-~Modelo~de~p\'ortico~plano.}$

Fonte: KIMURA (2007).

De acordo com Martha (2010), a representação matemática do comportamento dos elementos estruturais que compõem os pórticos planos, foi baseada na teoria das vigas de Navier, que rege o comportamento das vigas que atuam à flexão, adicionando-se os efeitos axiais.

A análise com pórticos planos se mostra mais eficiente quando comparada com o modelo de vigas contínuas, pois engloba um maior número de elementos estruturais e por admitir a atuação das forças verticais e horizontais. Porém, este modelo dispõe de algumas limitações, como não conseguir avaliar os efeitos associados a torção, sendo mais recomendado o uso de um modelo tridimensional, como o pórtico espacial. Restringe-se a determinação dos esforços normais e cortantes, além dos momentos fletores.

Há um especial interesse no uso de pórticos planos na análise de ações horizontais (análise de estabilidade global), dada a possibilidade de associação dos diferentes pórticos de uma mesma direção, por meio de barras articuladas nas extremidades, barras essas que simulam o efeito das lajes. Esse artifício visa considerar a laje como um diafragma rígido, ou seja, que os pontos situados no mesmo pavimento transladam de forma conjunta. Por isso, as deformações axiais dessas barras devem ser impedidas, por exemplo, aumentando-se a área de suas seções transversais. Bons resultados são obtidos considerando as lajes como barras de comprimento menor ou igual a um metro, e seção transversal de um metro de largura e altura igual à verdadeira espessura da laje. As ações horizontais são aplicadas em uma das extremidades da associação de pórticos. (FONTES, 2005, p. 13)

2.4.6 Pórtico espacial

De acordo com Kimura (2007), o pórtico espacial ou quadro espacial consiste num modelo tridimensional composto por barras que representam todos os pilares e vigas localizados em um edifício, permitindo uma avaliação completa e eficiente do comportamento global da estrutura (ver Figura 2.16). Para este caso, permite-se a aplicação simultânea das ações verticais e horizontais, permitindo-se que o edifício seja analisado em todas as direções e sentidos.

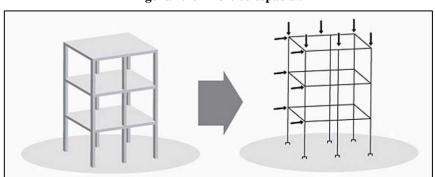


Figura 2.16 - Pórtico espacial.

Fonte: KIMURA (2007).

Segundo Fontes (2005), tem-se que esse tipo de modelo permite determinar momentos fletores e de torção, e esforços cortantes e normais, para cada elemento. Sendo o seu uso recomendado para a análise de carregamentos verticais ou horizontais, até mesmo com assimetria de planta.

Conforme Martha (2010), tem-se que o equilíbrio global dos pórticos espaciais deve satisfazer as condições de resultantes nulas para três componentes de força e para três componentes de momento no espaço tridimensional. Assim sendo, obtêm-se seis equações de equilíbrio, que correspondem a junção das equações dos pórticos planos com as equações das grelhas.

Para Chagas (2012), os modelos de pórticos espaciais não necessitam de tantas correções como os outros modelos abordados, já que, é admitido o volume dos elementos que representam quase a totalidade da estrutura real, indicando os esforços corretamente, pois essa configuração mais real dos elementos distribui os esforços da forma correta.

A NBR 6118 (ABNT, 2014) realiza algumas colocações quanto aos pórticos espaciais, permitindo-se que seja feita uma redução na rigidez à torção das vigas por fissuração, empregando-se 15% da rigidez elástica. Tendo-se ainda, que para a verificação de estados-limites últimos, pode-se considerar a rigidez a torção das vigas nulas, a fim de eliminar a torção de compatibilidade da análise.

2.5 MÉTODOS DOS ESTADOS-LIMITES

De acordo com Araujo (2014a), além de considerar todos os fatores econômicos e estéticos, na realização de um projeto estrutural deve-se atender outros requisitos de qualidade, como: a segurança, bom desempenho em serviço e durabilidade. O autor aludido elabora algumas considerações com relação aos fatores citados:

- a) Segurança: dentro dos limites de segurança previstos em projeto, a estrutura deve suportar as ações atuantes ao longo da sua vida útil;
- Bom desempenho em serviço: as deformações sofridas pela estrutura devem ser pequenas em suas condições normal, não afetando a sua aparência e gerando desconforto para os usuários;
- c) Durabilidade: ao longo de sua vida útil a estrutura deve se apresentar em um bom estado de conservação sob a influência de fatores externos, sem a necessidade de elaboração de reparos de alto custo.

Nesse contexto, a NBR 6118 (ABNT, 2014) considera os estados-limites últimos e os estados-limites de serviço.

2.5.1 Estados-limites últimos (ELU)

A NBR 6118 (ABNT, 2014) define o estado-limite último como aquele relacionado ao colapso, ou qualquer outra forma de ruína estrutural.

Segundo Araujo (2014a), na elaboração de projetos de concreto armado é importante que seja verificada a segurança com relação aos estados-limites últimos. Isso pode ser realizado considerando os seguintes fatores: análise da ruptura dos materiais; estudo da instabilidade da estrutura, admitindo os efeitos de segunda ordem; redução no equilíbrio da estrutura, supondo que seja um corpo rígido; estado-limite último resultante de solicitações dinâmicas e a transformação da estrutura em um sistema hipostático.

2.5.2 Estados-limites de serviço (ELS)

Segundo a NBR 6118 (ABNT, 2014), tem-se que os estados-limites de serviço correspondem àqueles relacionados ao conforto do seu usuário e à durabilidade, aparência e boa utilização das estruturas, ao longo de sua vida útil e considerando os carregamentos admitidos na elaboração do projeto.

2.6 AÇÕES

"Denomina-se ação qualquer influência, ou conjunto de influências, capaz de produzir estados de tensão ou de deformação em uma estrutura" (CARVALHO E FIGUEIREDO FILHO, 2014, p. 53).

De acordo com a NBR 6118 (ABNT, 2014), na análise estrutural deve ser considerada a influência de todas as ações que possam produzir efeitos significativos para a segurança da estrutura em exame, levando-se em conta os possíveis estados limites últimos e os de serviço.

Nesse contexto, a NBR 8681 (ABNT, 2004) define ações como as causas que provocam esforços ou deformações nas estruturas, considerando-se do ponto de vista prático, que as próprias forças e as deformações impostas pelas ações seriam as próprias ações.

"Essas ações não necessariamente são cargas externas aplicadas diretamente ao edifício, podem ser características do material ou da construção da estrutura, que geram esforços adicionais que devem ser considerados no projeto estrutural" (KIMURA, 2007, p. 64).

2.6.1 Tipos de ações

Segundo a NBR 8681 (ABNT, 2004), tem-se que para a determinação das regras de combinações das ações, estas são classificadas de acordo com a sua variabilidade no tempo, subdividindo-se em três categorias: ações permanentes, ações variáveis e ações excepcionais.

2.6.1.1 Ações permanentes

"As ações permanentes são aquelas que ocorrem com valores constantes, ou de pequena variabilidade, durante praticamente toda a vida útil da construção" (ARAUJO, 2014a, p. 90). Elas são subdividas em permanentes diretas e indiretas.

De acordo com a NBR 6118 (ABNT, 2014) as ações permanentes diretas são constituídas pelo peso próprio da estrutura, pelos pesos dos elementos construtivos fixos, das instalações permanentes e dos empuxos permanentes. Carvalho e Figueiredo Filho (2014), afirmam que as o peso próprio da estrutura é definido com base na massa específica dos materiais utilizados na construção. O peso das instalações permanentes é definido com base nos valores nominais determinados pelos seus fornecedores e os empuxos de terra, caso admita-se que os materiais não sejam removíveis.

Para Araujo (2014a), tem-se que as ações permanentes indiretas podem ser os recalques de apoio, a retração e fluência do concreto, a protensão (para o concreto protendido) e as imperfeições geométricas de pilares.

2.6.1.2 Ações variáveis

De acordo com Giongo (2007), as ações variáveis correspondem as que ocorrem nas estruturas com valores que apresentam variações em torno de sua média, durante a vida da construção. Trata-se das ações de uso nas construções (veículos, móveis, pessoas, equipamentos), assim como os efeitos decorrentes das ações do vento, das variações de temperatura, a ocorrência de atrito nos aparelhos de apoio e as pressões atuantes (hidrostáticas e hidrodinâmicas).

A NBR 8681 (ABNT, 2004) classifica as ações variáveis em normais e especiais. O primeiro grupo corresponde as ações que apresentam uma probabilidade razoável de ocorrência, sendo obrigadas a serem previstas em projeto, como cargas acidentais, ação do vento e da água. O segundo grupo admite ações incomuns, como as ações sísmicas ou cargas acidentais da natureza.

2.6.1.3 Ações excepcionais

Segundo Araujo (2014a), as cargas excepcionais são aquelas que apresentam uma duração muito curta e uma baixa probabilidade de ocorrência durante a vida útil da construção (explosões, choques de veículos, incêndios, enchentes, sismos), porém, devem ser consideradas no projeto de determinados tipos de estruturas.

2.6.2 Ações devido ao vento

De acordo com Chavéz (2006), nos últimos anos tem-se observado uma mudança no comportamento climatológico em geral, como o aparecimento de ciclones extratropicais na costa brasileira. Este fato, gerou preocupações no desenvolvimento dos projetos estruturais, passando-se a admitir a pressão do vento atuante nas edificações de forma simplificada.

Conforme o autor supracitado, tem-se que o vento consiste em um fenômeno instável com o tempo, que dispõe de flutuações aleatórias em torno de um valor médio de velocidades, denominadas rajadas, que se comportam com uma ocorrência sequencial de frequência e intensidade de curta duração.

A ação do vento em edificações depende de dois aspectos: meteorológicos e aerodinâmicos. Os aspectos meteorológicos serão responsáveis pela velocidade do vento a considerar no projeto da estrutura de uma dada edificação. Ela é avaliada a partir de considerações como: local da edificação, tipo de terreno, altura da edificação, rugosidade do terreno e tipo de ocupação. (MONCAYO, 2011, p. 101)

Tem-se que todas as considerações relativas as ações dos ventos devem ser feitas de acordo com os preceitos determinados na NBR 6123 (ABNT, 1988). Sendo essa norma a norteadora das condições exigíveis na análise das forças oriundas da ação estática e dinâmica do vento, para a realização dos cálculos para determinada edificação.

2.6.2.1 Cálculo da velocidade do vento

Segundo a NBR 6123 (ABNT, 1988), define-se a velocidade básica do vento, V₀, como a velocidade de uma rajada com duração de 3 segundos, expedida em média uma vez em 50 anos, com uma altura de 10 metros acima do terreno, considerando um campo plano e aberto.

A velocidade característica do vento, V_k , pode ser definida a partir da velocidade básica, quando multiplicada pelos fatores estabelecidos pela norma (ver Eq. 2.12).

$$V_k = V_0 * S_1 * S_2 * S_3 \tag{2.12}$$

Em que:

- V_k Velocidade característica do vento;
- V₀ Velocidade básica do vento;
- S₁ Fator topográfico;
- S₂ Fator meteorológico;
- S₃ Fator estatístico.

A velocidade básica do vento é determinada com base no mapa das isopletas (ver Figura 2.17), que é fornecido pela NBR 6123 (ABNT, 1988) considerando essa velocidade atuante no Brasil, em um intervalo de 5 m/s, e sempre supondo que a ação do vento ocorre na direção horizontal.

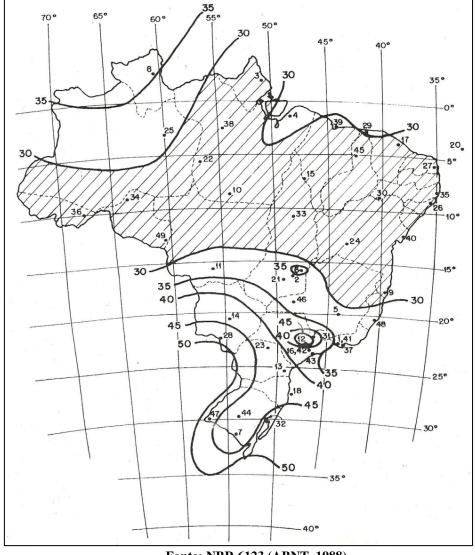


Figura 2.17 - Isopletas da velocidade básica (m/s).

Fonte: NBR 6123 (ABNT, 1988).

O fator topográfico, S₁, está correlacionado com as variações de relevo presentes no terreno em que se planeja realizar a construção da edificação analisada.

Nesse contexto, a NBR 6123 (ABNT, 1988) admite-se três possíveis situações:

- a) Terreno plano ou fracamente acidentado: S1 = 1,0;
- b) Taludes e morros suscetíveis a ação de ventos bidimensionais e definindo-se S_1 em função do ângulo de inclinação, θ , dos elementos (ver Figura 2.18).
- Admitindo o ponto A (morros) e os pontos A e C (taludes), adota-se um fator topográfico unitário.
 - Considerando o ponto B, tem-se que:

$$\theta \le 3^{\circ} \qquad \qquad \longrightarrow \qquad \qquad S_1(z) = 1,0 \tag{2.13}$$

$$S_{1}(z) = 1,0 + (2,5 - \frac{z}{d}) * tg(\theta - 3^{\circ}) \ge 1$$

$$\theta \ge 45^{\circ}$$

$$S_{1}(z) = 1,0 + (2,5 - \frac{z}{d}) * 0,31 \ge 1$$

$$(2.14)$$

$$(2.15)$$

Em que:

- z Altura medida a partir da superfície do terreno no ponto considerado;
- d Diferença de nível entre base e o topo do talude ou morro;
- θ Inclinação média do talude ou encosta do morro.
 - c) Vales profundos, protegidos de ventos de qualquer direção: S1 = 1,0.

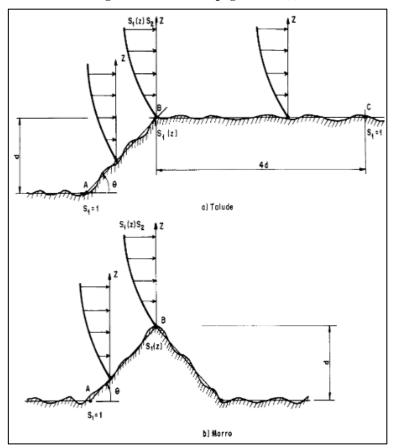


Figura 2.18 - Fator topográfico $S_1(z)$.

Fonte: NBR 6123 (ABNT, 1988).

De acordo com Moncayo (2011), o fator S_2 admite o efeito combinado da rugosidade do terreno, da variação do vento em conjunto com a altura do terreno e as dimensões da edificação.

A NBR 6123 (ABNT, 1988), apresenta cinco categorias de rugosidade do terreno, sendo elas:

- a) Categoria I: Corresponde as superfícies lisas de grandes dimensões, com extensão superior a 5 km, realizando a medida na direção e sentido do vento incidente;
- b) Categoria II: Terrenos abertos em nível ou aproximadamente, dispondo de poucos obstáculos isolados (árvores, edificações baixas);
- c) Categoria III: Terrenos planos ou ondulados, apresentando obstáculos;
- d) Categoria IV: Terrenos cobertos de obstáculos numerosos e com distanciamento reduzido, em zonas florestais, industriais ou áreas urbanas;
- e) Categoria V: Terrenos cobertos por obstáculos numerosos, altos e com distanciamento reduzido.

Além disso, a norma supracitada estabelece três classes de edificações, considerando intervalos de tempo para a determinação da velocidade média, de 3 s, 5 s e 10 s.

- a) Classe A: Toda edificação que apresenta a maior dimensão horizontal ou vertical inferior ou igual a 20 metros;
- b) Classe B: Toda edificação ou parte da edificação que apresenta a maior dimensão horizontal ou vertical no intervalo entre 20 m e 50 m;
- c) Classe C: Toda edificação que apresenta a maior dimensão horizontal ou vertical superior a 20 metros.

Após estas considerações, pode-se calcular o fator S₂ através da expressão:

$$S_2 = b * F_r * (\frac{z}{10})^p (2.16)$$

Em que:

- z altura acima do nível do terreno;
- F_r Fator de rajada para o terreno de categoria II;
- b e p parâmetros meteorológicos.

A NBR 6123 (ABNT, 1988), determina os parâmetros meteorológicos b, F_r e p de forma tabelada (ver Tabela 2.6).

Tabela 2.6 - Parâmetros meteorológicos.

Catagoria	77 (ma)	Da wâma at wa	Classes			
Categoria	zg (m)	Parâmetro	A	В	C	
I	250	b	1,1	1,11	1,12	
	250	p	0,06	0,065	0,07	
II		b	1	1	1	
	300	F_r	1	0,98	0,95	
		p	0,085	0,09	0,1	
III	350	b	0,94	0,94	0,93	
		p	0,1	0,105	0,115	
IV	420	b	0,86	0,85	0,84	
	420	p	0,12	0,125	0,135	
V	500	b	0,74	0,73	0,71	
	500	p	0,15	0,16	0,175	

Fonte: Adaptada de NBR 6123 (ABNT, 1988).

Segundo Moncayo (2011), tem-se que o fator estatístico S₃, admite os conceitos probabilísticos e o tipo de ocupação, relacionando-se com a segurança da edificação.

Na NBR 6123 (ABNT, 1988), tem-se que a velocidade básica dispõe de um período de recorrência média de 50 anos, sendo que V_0 pode ser igualada ou excedida em uma probabilidade de 63%. Nesse contexto, os valores mínimos do fator estatístico são tabelados (ver Tabela 2.7).

Tabela 2.7 - Valores mínimos do fator estatístico S3.

Grupo	Descrição	S ₃				
1	Edificações cuja ruína total ou parcial pode afetar a segurança ou	1,10				
	possibilidade de socorro a pessoas após uma tempestade destrutiva					
	(hospitais, quartéis de bombeiros e forças de segurança, centros de					
	comunicação, etc)					
2	Edificações para hotéis e residências. Edificações para comércio e	1,00				
	indústria com alto fator de ocupação.					
3	Edificações e instalações industriais com baixo fator de ocupação	0,95				
	(depósitos, silos, construções rurais)					
4	Vedações (telhas, vidros, painéis de vedação, etc)	0,88				
5	Edificações temporárias. Estruturas dos grupos 1 e 3 durante a construção	0,83				

Fonte: Adaptada de NBR 6123 (ABNT, 1988).

Após a determinação da velocidade característica do vento, pode-se determinar a pressão dinâmica do vento (ver Eq. 2.17).

$$q = 0.613 * V_k^2 (2.17)$$

2.6.2.2 Força de arrasto e coeficiente de arrasto

"A força de arrasto F_a é a componente da força global do vento sobre uma edificação, e tal força global pode ser obtida pela soma vetorial das forças de arrasto que atuam na edificação" (MONCAYO, 2011, p. 107). Assim sendo, tem-se que a força de arrasto pode ser calculada pela expressão:

$$F_a = C_a q A_e \tag{2.18}$$

Em que:

- Ca Coeficiente de arrasto;
- Ae Área efetiva, que corresponde a projeção ortogonal da edificação, sobre um plano perpendicular à direção do vento.

Para os casos de edificações retangulares em que o vento incide perpendicularmente em suas fachadas, pode-se determinar o coeficiente de arrasto a partir de gráficos estabelecidos pela NBR 6123 (ABNT, 1988). Admitindo duas situações: vento com baixa turbulência (ver Figura 2.19) e vento com alta turbulência (ver Figura 2.20).

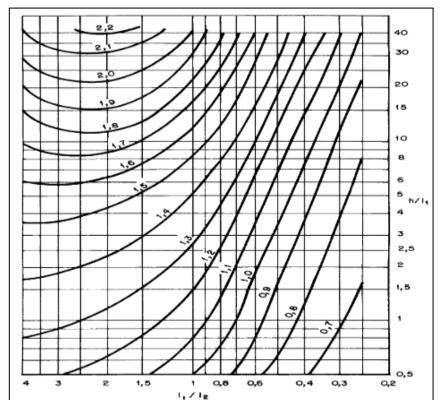


Figura 2.19 - Coeficiente de arrasto, Ca, para edificações paralelepípedas em vento de baixa turbulência.

Fonte: NBR 6123 (ABNT, 1988).

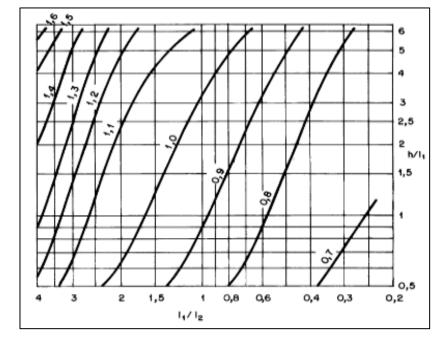


Figura 2.20 - Coeficiente de arrasto, Ca, para edificações paralelepípedas em vento de alta turbulência.

Fonte: NBR 6123 (ABNT, 1988).

Com base nas figuras anteriores, perceba que o coeficiente de arrasto é estabelecido a partir das relações l_1/l_2 e h/ l_1 . É importante salientar que l_1 sempre irá corresponder a lado da edificação que é perpendicular a incidência do vento.

2.6.3 Combinações das ações

Após definir os carregamentos atuantes em uma edificação, é importante considerar possíveis combinações em que essas cargas atuam simultaneamente de forma significativa em um determinado período. As considerações sobre os tipos de combinações e os coeficientes de ponderação são previstas na NBR 8681 (ABNT, 2004), onde são apresentadas as formulações e as tabelas com os valores dos coeficientes.

De acordo com a NBR 6118 (ABNT, 2014), tem-se que as combinações das ações devem ser realizadas de forma que sejam determinados os efeitos mais desfavoráveis para a construção, assim como a verificação da segurança com relação aos estados-limites últimos e os estados-limites de serviço, que é realizada a partir das combinações últimas e das combinações de serviço, respectivamente.

2.6.3.1 Combinações últimas das ações

De acordo com Carvalho e Figueredo Filho (2014), as combinações últimas são classificadas como normais (nessa categoria admite-se apenas os referentes ao esgotamento da capacidade resistente para elementos de concreto armado), especiais ou de construção e excepcionais.

A NBR 8681 (ABNT, 2004) estabelece alguns critérios para a realização das combinações últimas das ações, onde as ações permanentes devem figurar em todas as combinações das ações, assim como considerações específicas para cada tipo de combinação.

a) Combinações últimas normais

Para as combinações últimas normais admite-se que para cada combinação uma ação variável seja adotada como principal, de modo que seja empregado o seu valor característico. As demais ações variáveis são ditas como secundárias e são minoradas por coeficientes de ponderação tabelados. A NBR 6118 (ABNT, 2014) apresenta a expressão que rege este tipo de combinação (ver Eq. 2.19).

$$F_d = \gamma_g F_{gk} + \gamma_{\varepsilon g} F_{\varepsilon gk} + \gamma_q (F_{q1k} + \sum \psi_{0j} F_{qjk}) + \gamma_{\varepsilon q} \psi_{0\varepsilon} F_{\varepsilon qk}$$
 (2.19)

Em que:

- $\bullet \ F_d-Valor$ de cálculo das ações para combinação última;
- $\bullet \quad F_{gk}-Valor \; caracter\'istico \; das \; a\~c\~oes \; permanentes;$
- $F_{\epsilon k}$ Representa as ações indiretas permanentes com retração $F_{\epsilon gk}$ e variáveis como a temperatura $F_{\epsilon qk}$;
- ullet F_{qk} Representa as ações variáveis diretas das quais F_{q1k} é escolhida como principal;
- $\bullet \quad \gamma_g, \gamma_{\epsilon g}, \gamma_q, \gamma_{\epsilon q} Valores \ indicados \ na \ Tabela \ 11.1 \ (p.65) \ da \ NBR \ 6118 \ (ABNT, \ 2014);$
- ψ_{0j} , $\psi_{0\epsilon}$ Valores indicados na Tabela 11.2 (p.65) da NBR 6118 (ABNT, 2014).

b) Combinações últimas especiais ou de construção

De acordo com Araujo (2014a), tem-se que os carregamentos especiais são transitórios, apresentando uma duração bastante pequena comparada a vida útil da estrutura, e os seus efeitos podem preponderar os efeitos produzidos pelo carregamento normal. O carregamento de

construção é impermanente em função das diferentes etapas do processo construtivo, admitindo-o apenas em situações que apresentam risco de ocorrência do estado limite nessa fase.

A NBR 8681 (ABNT, 2003) destaca que as combinações últimas especiais, quando existem, a ação variável especial deve ser admitida com seu valor representativo e as demais ações variáveis devem ser consideradas com valores correspondentes a uma probabilidade não desprezível de atuação simultânea com a ação variável especial.

Percebe-se que é admitida a mesma expressão utilizada para realizar as combinações últimas normais, com os mesmos significados. Porém, Carvalho e Figueredo Filho (2014) destaca que ψ_0 pode ser substituído por ψ_2 quando F_{q1k} apresentar uma duração muito curta.

$$F_d = \gamma_g F_{gk} + \gamma_{\varepsilon g} F_{\varepsilon gk} + \gamma_q (F_{q1k} + \sum \psi_{0j} F_{qjk}) + \gamma_{\varepsilon q} \psi_{0\varepsilon} F_{\varepsilon qk}$$
 (2.20)

c) Combinações últimas excepcionais

De acordo com a NBR 8681 (ABNT, 2003), tem-se que nas combinações últimas excepcionais, quando existirem, a ação excepcional deve ser admitida com seu valor representativo e as demais ações variáveis devem ser consideradas com valores referentes a uma probabilidade relativamente alta de atuação simultânea com a ação variável excepcional.

Para Araujo (2014a), o carregamento excepcional é transitório, que se estende por períodos extremamente curtos, podendo resultar em efeitos catastróficos. Assim sendo, esse tipo de carregamento deve ser considerado no projeto quando sua ocorrência não possa ser desprezada, ou quando não podem ser executadas medidas preventivas para minimizar os seus efeitos, podendo-se citar como exemplo as ações sísmicas e incêndios.

Para executar essa combinação emprega-se a expressão indicada na Eq. 2.21. Percebese que ela é semelhante a expressão apresentada na Eq. 2.19, em que F_{q1exc} representa a ação excepcional e os demais termos dispõem dos mesmos significados.

$$F_d = \gamma_g F_{gk} + \gamma_{\varepsilon g} F_{\varepsilon gk} + F_{q1exc} + \gamma_q \sum \psi_{0j} F_{qjk} + \gamma_{\varepsilon q} \psi_{0\varepsilon} F_{\varepsilon qk}$$
 (2.21)

2.6.3.2 Combinações de serviço das ações

A NBR 8681 (ABNT, 2004) afirma que nas combinações de serviço são consideradas todas as ações permanentes, até mesmo as deformações, e as ações variáveis associadas a cada um dos tipos de combinação.

As combinações de serviço são definidas de acordo com o seu período de permanência em uma estrutura e podem ser classificadas em quase permanentes, frequentes e raras.

De acordo com Araujo (2014b), tem-se que para as estruturas de concreto armado, importam apenas as combinações quase permanentes e as combinações frequentes das ações. As primeiras são utilizadas na verificação do estado limite de deformações excessivas. As segundas são empregadas na verificação do estado limite de fissuração inaceitável e nos estados limites de deformações excessivas, decorrentes do vento ou de variações de temperatura.

a) Combinações quase permanentes de serviço

Para Carvalho e Figueredo Filho (2014), nas combinações quase permanentes de serviço admite-se que as ações atuam durante grande parte do período de vida da estrutura, podendo ser necessário que sejam consideradas na verificação do estado limite de deformação excessiva.

A NBR 8681 (ABNT, 2004) afirma que todas as ações variáveis são consideradas com seus valores quase permanentes $\psi_2 F_{qk}$.

$$F_{d,ser} = \sum F_{gi,k} + \sum \psi_{2j} F_{qj,k} \tag{2.22}$$

Em que:

- F_{d,ser} Valor de cálculo das ações para combinações de serviço;
- ψ_2 Fator de redução de combinação quase permanente para ELS.

b) Combinações frequentes de serviço

De acordo com Araujo (2014b), as combinações frequentes correspondem a aquelas que se repetem muitas vezes durante o período de vida da estrutura, em uma ordem de 10⁵ vezes em 50 anos, ou que apresentem uma duração total igual a uma parte não desprezível desse período, da ordem de 5%.

Na NBR 8681 (ABNT, 2004) é disposto que para essas combinações, a ação variável principal F_{q1} é tomada com seu valor frequente $\psi_1 F_{q1k}$ e todas as outras ações variáveis são tomadas com seus valores quase permanentes $\psi_2 F_{qk}$.

$$F_{d,ser} = \sum F_{gik} + \psi_1 F_{q1k} + \sum \psi_{2j} F_{qjk}$$
 (2.23)

Em que:

- F_{d,ser} Valor de cálculo das ações para combinações de serviço;
- $\bullet \quad F_{q1k}-Valor \; caracter\'{istico} \; das \; a\~{coes} \; vari\'{a}veis \; principais \; diretas; \\$
- ψ₁ Fator de redução de combinação frequente para ELS.
 - c) Combinações raras de serviço

Ao contrário das combinações frequentes, as combinações raras acontecem algumas vezes ao longo da vida útil da estrutura, podendo ser admitida para a realização da verificação do estado limite de formação de fissuras.

A NBR 8681 (ABNT, 2004) afirma que nas combinações raras de serviço, a ação variável principal F_{q1} é tomada com seu valor característico F_{q1k} e todas as demais ações são tomadas com seus valores frequentes $\psi_1 F_{qk}$.

$$F_{d,ser} = \sum F_{gik} + F_{q1k} + \sum \psi_{1j} F_{qjk}$$
 (2.24)

2.6.4 Coeficientes de ponderação das ações

A NBR 6118 (ABNT, 2014) estabelece coeficientes de ponderações das ações, elevando os esforços caso sejam desfavoráveis, por exemplo.

2.6.4.1 Coeficientes de ponderação das ações no estado-limite último (ELU)

Para o estado-limite último, os coeficientes são tabelados e definidos de acordo com o tipo de combinação e com a aplicação da edificação (ver Tabelas 2.8 e 2.9).

	Tabela	2.8 -	Coeficiente ?	yf = f	yf1*γf.	3.
--	---------------	-------	---------------	--------	---------	----

	Ações								
Combinações de ações	Permanentes (g)		Variáveis (q)		Protensão (p)		Recalques de apoio e retração		
	D	F	G	T	D	F	D	F	
Normais	1,4 ^a	1	1,4	1,2	1,2	0,9	1,2	0	
Especiais ou de construção	1,3	1	1,2	1	1,2	0,9	1,2	0	
Excepcionais	1,2	1	1	0	1,2	0,9	0	0	

Onde,

D é desfavorável, F é tolerável, G representa as cargas variáveis em geral e T é a temperatura.

Fonte: Adaptada da NBR 6118 (ABNT, 2014).

Tabela 2.9 - Valores do coeficiente γf2.

Ações			γ _{f2}			
			Ψ_1^a	Ψ2		
Cargas	Locais em que não há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, nem de elevadas concentrações de pessoas b		0,4	0,3		
acidentais de edifícios	Locais em que há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, ou elevada concentração de pessoas concentração de pessoa de pe	0,7	0,6	0,4		
	Biblioteca, arquivos, oficinas e garagens	0,8	0,7	0,6		
Vento	Pressão dinâmica do vento nas estruturas em geral	0,6	0,3	0		
Temperatura	Variações uniformes de temperatura em relação à média anual local	0,6	0,5	0,3		

- a Para os valores de Ψ_1 relativos às pontes e principalmente para os problemas de fadiga.
- b Edifícios residenciais.
- c Edifícios comerciais, de escritórios, estações e edifícios públicos.

Fonte: Adaptada da NBR 6118 (ABNT, 2014).

2.6.4.2 Coeficientes de ponderação das ações no estado-limite de serviço (ELS)

Com relação aos estados-limite de serviço, a NBR 6118 (ABNT, 2014), adota para γ_f os valores de γ_{f2} definidos na Tabela 2.8. Nos casos de combinações raras, adota-se o valor

a - Para as cargas permanentes de pequena variabilidade, como o peso próprio das estruturas, especialmente as pré-moldadas, esse coeficiente pode ser reduzido para 1,3.

unitário. Em combinações frequentes emprega-se Ψ_1 e Ψ_2 para combinações quase permanentes.

2.7 ANÁLISE DA ESTABILIDADE GLOBAL E EFEITOS DE SEGUNDA ORDEM

Ao elaborar um projeto estrutural, tem-se que o posicionamento e dimensionamento dos pilares, apresenta como principal objetivo, atender as cargas verticais atuantes na estruturas, de acordo com variados tipos de ações, abordadas no tópico 2.6.1.

É fato que nos últimos tempos a construção de edificações mais altas e esbeltas, com uma área horizontal menor, tem-se difundindo por todas as cidades. Porém, o uso frequente dessas características abriu espaço para novas discursões relacionados ao comportamento da estrutura.

Nesse contexto, passou-se a admitir que o comportamento estrutural não estaria relacionado apenas com os carregamentos verticais, mas também, aos carregamentos que ocorrem em função da atuação das ações do vento ou devido aos efeitos do empuxo, por exemplo. Sabendo-se que estes carregamentos apresentam uma maior influência conforme aumenta-se a altura da edificação, solicitando uma maior atenção com relação ao estudo da estabilidade global da estrutura.

"A análise da estabilidade global de estruturas visa, portanto, classificá-las quanto à sua deslocabilidade lateral, vez que os efeitos de segunda ordem são produzidos pela ação de carregamento vertical atuando nos deslocamentos horizontais" (SOBRINHO JÚNIOR et al, 2016).

De acordo com Moncayo (2011), na elaboração de projetos de edifícios, a estabilidade global é um requisito importantíssimo, pois, visa garantir a segurança estrutural diante do estado limite último de instabilidade, que consiste na situação em que há perda da capacidade resistente da estrutura, em decorrência do aumento das deformações.

Ao elaborar um estudo da estabilidade global de uma edificação de concreto armado, é importante que se tenha conhecimento sobre os tipos de análises que podem ser realizadas, sendo elas: análise de primeira ordem e análise de segunda ordem.

Segundo Kimura (2007), a análise de primeira ordem consiste no estudo em que o cálculo da estrutura é elaborado na sua configuração geométrica inicial não deformada, acarretando os denominados "efeitos de primeira ordem". De maneira geral, trata-se de uma análise convencional e mais simplória, que é desenvolvida na graduação ao calcular uma estrutura.

Ainda segundo o autor supracitado, a análise de segunda ordem corresponde ao estudo no qual o cálculo da estrutura é executado na sua posição deformada, resultando no aparecimento de efeitos adicionais denominados "efeitos de segunda ordem".

"A análise estrutural com efeitos de 2ª ordem deve assegurar que, para as combinações mais desfavoráveis das ações de cálculo, não ocorra perda de estabilidade nem esgotamento da capacidade resistente de cálculo" (NBR 6118, 2014).

A NBR 6118 (ABNT, 2014) classifica os efeitos de 2ª ordem em três tipo: globais, locais e localizados. Admitindo-se uma edificação suscetível a atuação de cargas verticais (peso próprio, sobrecarga) e cargas horizontais (ação do vento, empuxo), tem-se que os nós da estrutura apresentarão o deslocamento horizontal, sendo os esforços de 2ª ordem provenientes destes deslocamentos denominados "efeitos globais de 2ª ordem".

Os efeitos locais de 2ª ordem estão ligados a partes específicas da estrutura. Eles podem ser observados, por exemplo, em lances de pilares nos quais os seus eixos não se encontram retilíneos, sob a atuação de momentos fletores.

Os efeitos localizados de 2ª ordem correspondem a uma região específica de um elemento estrutural onde ocorre concentração de tensões. Como exemplo, pode-se citar os pilares-parede, que há a possibilidade de dispor uma região com não retilineidade superior ao eixo do pilar.

"O efeito de 2ª ordem localizado, além de aumentar nessa região a flexão longitudinal, aumenta também a flexão transversal, havendo a necessidade de aumentar a armadura transversal nessas regiões" (NBR 6118, 2014, p. 102).

A NBR 6118 (ABNT, 2014) faz algumas considerações sobre a classificação da estrutura quanto à mobilidade, subdividindo-a em estruturas de nós fixos e estruturas de nós móveis. A primeira nomeação está associada ao caso em que as estruturas apresentam deslocamentos horizontais muito pequenos em seus nós, podendo-se desprezar os efeitos globais de 2ª ordem, atentando-se que esses sejam inferiores a 10% dos respectivos esforços de 1ª ordem. Porém, admite-se que a estrutura apresenta nós móveis, caso os deslocamentos horizontais apresentem valores razoáveis, considerando a importância dos efeitos globais de 2ª ordem, de modo que esses sejam superiores a 10% dos respectivos esforços de 1ª ordem.

2.7.1 Parâmetro de instabilidade (α)

De acordo com Araujo (2016), tem-se que o parâmetro de instabilidade α foi inicialmente adotado pela norma alemã DIN (*Deutsches Institut für Normung*) em 1978 e,

posteriormente, pelo CEB (Comité Euro – Internacional do Béton), com o objetivo de auxiliar os projetistas na avaliação da deslocabilidade dos edifícios.

Em síntese, o parâmetro α foi proposto em 1966, por Hurbert Beck e Gert König, após o estudo de pórticos rotulados, contraventados por parede atuante como viga vertical em balanço. De acordo com Freitas, Luchi e Ferreira (2016), os estudos desenvolvidos levaram a uma equação diferencial de complicada solução com coeficientes variáveis, porém, após a realização de uma simplificação matemática, a equação foi reduzida às funções de Bessel², de modo que a sua solução resultou na expressão que determina o parâmetro α , indicada no decorrer do texto.

A NBR 6118 (ABNT, 2014) estabelece a expressão para o cálculo do parâmetro de instabilidade α (ver Eq. 2.25). Esta norma também faz considerações para uma estrutura reticulada simétrica, podendo considera-la como sendo de nós fixos caso o parâmetro de instabilidade α seja menor que o valor de α_1 (ver Eqs. 2.26 e 2.27).

$$\alpha = H_{tot} * \sqrt{\frac{N_k}{E_{cs}I_c}}$$
 (2.25)

De modo que,

$$\alpha_1 = 0.2 + 0.1n$$
 Se: $n \le 3$ (2.26)

$$\alpha_1 = 0.6$$
 Se: $n \ge 4$ (2.27)

Em que:

- n número de andares acima da fundação ou de um nível pouco deslocável do subsolo;
- H_{tot} altura total da estrutura, medida a partir do topo da fundação ou de um nível pouco deslocável do subsolo;
- N_k somatório de todas as cargas verticais atuantes na estrutura, com seu valor característico;
- E_{cs}I_c somatório dos valores de rigidez de todos os pilares na direção considerada. No caso
 de estruturas de pórticos, de treliças ou mistas, ou com pilares de rigidez variável ao longo
 da altura, pode ser considerado o valor da expressão E_{cs}I_c de um pilar equivalente de seção
 constante.

² Equação diferencial ordinária definida pela expressão: $x^2y''+xy'+(x^2-v^2)y=0$, com x>0 e $y \in \mathbb{R}$.

Como ressalva Moncayo (2011), tem-se que o estudo do parâmetro de instabilidade α , embora não seja feita a consideração da fissuração dos elementos, a não-linearidade física do concreto é levada em conta na dedução do limite α_1 , pois o comportamento não-linear não surge apenas devido à fissuração, pois o concreto submetido à compressão já possui comportamento puramente não-linear.

2.7.2 Coefficiente γz

De acordo com a NBR 6118 (ABNT, 2014), o coeficiente γ_Z forma a avaliação da importância dos esforços de segunda ordem globais apresenta validez para estruturas reticuladas de no mínimo quatro andares (ver Eq. 2.28).

$$\gamma_Z = \frac{1}{1 - \frac{\Delta M_{tot,d}}{M_{1,tot,d}}} \tag{2.28}$$

Em que:

- M_{1,tot,d} momento de tombamento, ou seja, a soma dos momentos de todas as forças horizontais da combinação considerada, com seus valores de cálculo, em relação a base da estrutura;
- ΔM_{tot,d} é a soma dos produtos de todas as forças verticais atuantes na estrutura, na combinação considerada, com seus valores de cálculo, pelos deslocamentos horizontais e seus respectivos pontos de aplicação, obtidos da análise de 1ª ordem.

De acordo com Carmo (1995), o parâmetro γ_z surgiu do empenho de pesquisadores em definir um método mais simplista para detectar se a estrutura é composta por nós móveis ou fixos, sem precisar desenvolver uma análise de segunda ordem, além de estimar, com uma aproximação considerável, os esforços de segundo ordem, caso sejam relevantes.

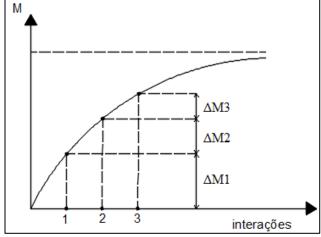
É importante salientar que a NBR 6118 (ABNT, 2014) define um valor limite para o coeficiente γ_z de 1,3, e estabelece que caso o parâmetro atinja um valor superior a estrutura apresentará um elevado grau de instabilidade. Respeita-se a condição que a estrutura dispõe de nós fixos caso $\gamma_z \le 1,1$, e de nós móveis para $1,1 < \gamma_z \le 1,3$.

A norma supracitada ainda afirma que uma solução aproximada para a obtenção dos esforços globais de 2ª ordem consiste na avaliação dos esforços finais (1ª ordem + 2ª ordem),

partindo-se da majoração adicional dos esforços horizontais da combinação de carregamento considerada por $0.95 \, \gamma_z$.

Carmo (1995) apresenta a demonstração da formulação do γ_z . Para isso, admite-se uma análise linear para as ações horizontais, calculando o momento de primeira ordem M_1 , em relação à base do edifício e os deslocamentos horizontais dos nós da estrutura. Porém, em decorrência desses deslocamentos associados, as ações verticais resultarão no aparecimento de acréscimos de momentos ΔM_2 , gerando, por sua vez, novos deslocamentos (ver Eq. 2.29). Esse processo se repete gerando momentos cada vez menores, até se tornarem praticamente nulos (ver Figura 2.21).

$$M = M_1 + \Delta M_1 + \Delta M_2 + \Delta M_3 + \dots + \Delta M_i$$
 (2.29)


De acordo com Carmo (1995, apud CEB, 1978), supõem-se que os momentos M_1 , ΔM_2 , ΔM_3 , etc. compõem uma progressão geométrica com razão (r) inferior ou igual a 1, tal que:

$$r = \frac{\Delta M_2}{\Delta M_1} = \frac{\Delta M_3}{\Delta M_2} = \dots = \frac{\Delta M_j}{\Delta M_{j-1}} < 1$$
 (2.30)

Tendo-se que $\Delta M_j = r^* \Delta M_{j-1}$. Nesse contexto, tem-se que:

$$M_2 = (1 + r + r^2 + r^3 + \dots + r^{j-1}) * M_1$$
 (2.31)

Figura 2.21 - Demonstração do Coeficiente γ_z .

Fonte: Adaptado de Carmo (1995).

Admitindo a Eq. 2.31, tem-se que a soma da progressão geométrica do segundo membro, corresponde ao limite para j tendendo ao infinito:

$$\lim_{\infty} \left(1 + r + r^2 + r^3 + \dots + r^{j-1} \right) * M_1 = \frac{1}{1 - r} M_1$$
 (2.32)

A razão $r = \Delta M_{j'}/\Delta M_{j-1}$ pode ser também definida como $r = \Delta M/M_{1}$, já que, admitindo j como a primeira análise linear, tem-se que $\Delta M_{j} = \Delta M_{2} = \Delta M$ e $\Delta M_{j-1} = \Delta M_{1} = M_{1}$. Então, a Eq. 2.32 pode ser reescrita como:

$$M_{2d} = \left(\frac{1}{1 - \frac{\Delta M_d}{M_{1d}}}\right) * M_{1d}$$
 (2.33)

Chamando-se de γ_z , a fração do segundo membro da Eq. 2.33, tendo-se que:

$$\gamma_Z = \frac{1}{1 - \frac{\Delta M_d}{M_{1d}}} \tag{2.34}$$

Considerando os casos de edifícios, que apresentam carregamentos verticais em diferentes pontos, obtém-se a formulação descrita na Eq. 2.28.

Salientando-se que a NBR 6118 (ABNT, 2014), afirma que na realização de análises de esforços globais de 2ª ordem, para estruturas reticulares com pelo menos quatro andares, a consideração da não linearidade física pode ser feita através da redução da rigidez dos elementos estruturais, adotando-se que:

Lajes:
$$(EI)_{sec} = 0.3E_cI_c$$
Vigas:
$$(EI)_{sec} = 0.4E_cI_c \ para \ A'_s \neq A_s \ e$$

$$(EI)_{sec} = 0.5E_cI_c \ para \ A'_s = A_s$$
Pilares:
$$(EI)_{sec} = 0.8E_cI_c$$

3. METODOLOGIA

3.1 DELINEAMENTO DA PESQUISA

Partindo-se do pressuposto da classificação das pesquisas com base em seus objetivos, o presente trabalho corresponde a uma pesquisa exploratória. Segundo Gil (2002), as pesquisas exploratórias apresentam como principal preocupação aprimorar ideias ou descobrir novas intuições. Tem-se que ela dispõe de um planejamento flexível, com o objetivo de proporcionar a consideração dos mais variados aspectos relativos ao fato estudado.

Nesse contexto, elaborou-se inicialmente uma pesquisa bibliográfica com o objetivo de nortear o desenvolvimento do estudo. Elencou-se livros, artigos, teses e dissertações da área estudada, permitindo uma ampliação do conhecimento para o foco da pesquisa.

Posteriormente, passou-se a desenvolver o estudo de caso que "consiste no estudo profundo e exaustivo de um ou poucos objetos, de maneira que permita seu amplo e detalhado conhecimento, tarefa praticamente impossível mediante outros delineamentos já considerados" (GIL, 2002, p.54).

3.2 OBJETOS DE ESTUDO

Para o desenvolvimento do presente trabalho considerou-se objetos de estudo empíricos, consistindo em duas edificações residenciais, dispondo de uma mesma área construída. A primeira edificação apresenta uma planta baixa simétrica, assim como a disposição de sua estrutura, e a segunda é assimétrica em apenas uma direção.

Admitiu-se que as edificações são localizadas em Cajazeiras – PB, na área urbana, sendo cercadas por outras residências. Fez este nível de especificações com o objetivo de tornar a análise da ação do vento mais precisa. Os dois objetos de estudo dispõem de cinco pavimentos (térreo + 4 pavimentos tipos), cada um ocupando uma área de terreno de 119,2 m², um pé direito de 3 metros e resultando em uma altura total de 15 metros da edificação.

Em posse das plantas baixas das respectivas edificações, fez-se as considerações referentes a distribuição dos elementos estruturais e a determinação das demais características de projeto. Os objetos de estudo apresentam uma arquitetura bastante simplista, contendo os elementos básicos necessários para uma edificação (ver Figuras 3.1 e 3.2).

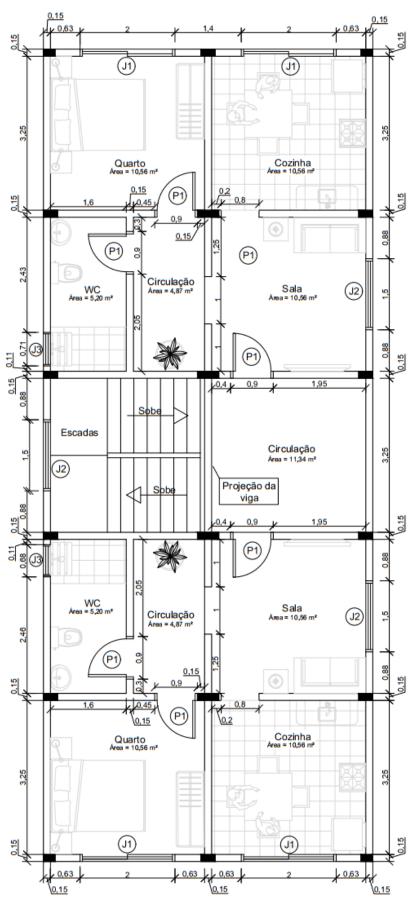


Figura 3.1 - Planta baixa do pavimento tipo da Edificação Simétrica (Sem escala).

Fonte: Autoria própria (2020).

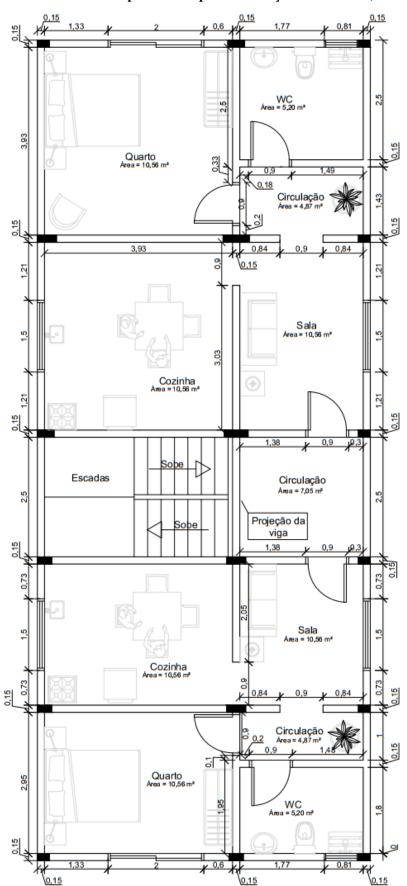


Figura 3.2 - Planta baixa do pavimento tipo da Edificação Assimétrica (Sem escala).

Fonte: Autoria própria (2020).

3.3 CONSIDERAÇÕES PRELIMINARES

Como foi abordado anteriormente, para a realização da análise estrutural das duas edificações, adotou-se dois modelos estruturais: pórtico plano e pórtico espacial. As modelagens numéricas foram desenvolvidas empregando o software SAP 2000.

Após a realização das simulações para as duas edificações, elaborou-se comparativos do comportamento dos esforços entre os dois modelos para cada pilar pertencente aos objetos de estudo. Ao término desta etapa, buscou-se elaborar correlações entre a edificação simétrica e a assimétrica.

Porém, precisou-se elaborar algumas considerações iniciais com relação aos materiais empregados, como a análise realizada era linear não foi considerado a atuação do aço presente nas armaduras. Seguindo as recomendações da NBR 6118 (ABNT, 2014) empregou-se um concreto com massa específica seca de 2.500 kg/m³, pertencente ao grupo I do tipo C25, ou seja, com resistência característica (fck) de 25 MPa.

Com a resistência característica do concreto definida, calculou-se o módulo de elasticidade inicial cujo o valor resultou em 28 GPa e o módulo de elasticidade secante, que reultou em 24,15 GPa, através das equações 2.3 e 2.4. Salientando-se que foi adotado um agregado do tipo granito.

Outros parâmetros também foram definidos, como a classe de agressividade ambiental, através da Tabela 2.3. Foi admitido que a edificação se encontra no meio urbano, com uma agressividade moderada, se enquadrando na classe II.

Definida a classe de agressividade ambiental, determinou-se os cobrimentos para os elementos estruturais, através da Tabela 2.4. Adotando-se para as lajes um cobrimento de 2,5 cm, enquanto para vigas e pilares obteve-se 3 cm.

3.4 CONCEPÇÃO ESTRUTURAL E PRÉ-DIMENSIONAMENTO DOS ELEMENTOS ESTRUTURAIS

De acordo com Clímaco (2008), o lançamento estrutural consiste na etapa em que se define a disposição das peças da estrutura, com o objetivo de se obter seu melhor ajuste ao projeto de arquitetura, levando-se em consideração o fator econômico, as facilidades construtivas e a eficiência global da edificação.

Com base no projeto arquitetônico, definiu-se as localizações das vigas e a disposição dos pilares. Ao posicionar os pilares buscou-se evitar vãos grandes e mantê-los alinhados, com

o objetivo de evitar possíveis complicações. Insere-se estes elementos em pontos estratégicos, afim de gerar o menor número possível de modificações no projeto arquitetônico.

Como o foco deste trabalho consiste na análise dos esforços das edificações indicadas anteriormente, não houve a preocupação de efetuar possíveis compatibilizações de projeto, desconsiderando o projeto elétrico e projeto hidrossanitário.

Para os dois objetos de estudo, optou-se por empregar a estruturação convencional, dispondo de lajes maciças, assim como vigas e pilares com seções retangulares. Porém, não foi considerado a presença de escadas, com o objetivo de simplificar as análises, optando-se por inserir lajes nos seus respectivos lugares. Também não foi admitido a análise das vigas baldrames e fundações, desconsiderando a interação entre o solo e a infraestrutura.

Após a elaboração do lançamento estrutural, fez-se o pré-dimensionamento dos elementos empregando métodos empíricos, com o objetivo de obter valores aceitáveis em suas respectivas seções.

Para a realização do pré-dimensionamento das lajes, definiu-se a sua altura útil (ver Eq. 2.8) e posteriormente a sua espessura (ver Eq. 2.7). Respeitando-se os limites estabelecidos pela NBR 6118 (ABNT, 2014).

Na elaboração do pré-dimensionamento das vigas, optou-se por adotar uma largura compatível com a espessura das paredes e estimou-se as suas respectivas alturas empregando a Eq. 2.10.

É importante salientar que buscou-se elaborar a menor variação possível com relação aos valores das alturas das vigas. Com isso, procurou-se manter o maior número de vigas com as mesmas dimensões, imaginando uma situação mais próxima da realidade, e considerando uma otimização na fabricação de fôrmas.

O pré-dimensionamento dos pilares foi realizado em conformidade com o item 2.2.3, definindo-se inicialmente as áreas de influência de cada pilar, pertencente aos objetos de estudo (ver Figura 3.3).

Com a coleta dos valores das áreas de influência para cada pilar, determinou-se os coeficientes de majoração da força normal de acordo com a sua tipologia (ver Tabela 2.5). Definidos esses valores, calculou-se a área da seção dos elementos estudados (ver Eq. 2.11). Considerando pilares com largura de 15 cm, determinou-se a sua altura, respeitando-se a seção mínima de 360 cm².

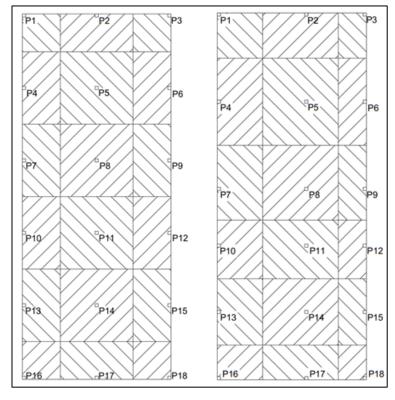


Figura 3.3 - Áreas de influência dos pilares pertencentes aos objetos de estudo.

a) Edificação simétrica.

b) Edificação assimétrica.

Fonte: Autoria própria (2020).

3.5 DESCRIÇÃO DA DETERMINAÇÃO DAS AÇÕES E COMBINAÇÕES

Para a determinação dos carregamentos, empregou-se a NBR 6120 (ABNT, 2018), que estabelece as ações mínimas a serem consideradas no projeto estrutural de edificações, assim como o peso específico e o carregamento por área dos componentes.

Antecipadamente, elenca-se que não foi considerado os carregamentos provenientes da platibanda e caixa d'água, com o objetivo de garantir uma maior uniformidade na distribuição dos esforços.

A NBR 6120 (ABNT), apresenta a massa específica para os variados tipos de materiais da construção civil. Em posse desses valores, juntamente com o quantitativo do material (espessura), pode-se definir o seu carregamento. Em alguns casos, a norma disponibiliza a carga distribuída por área diretamente, tais como: cargas variáveis, forro, impermeabilização, entre outros.

Para a determinação da ação do vento, executou-se o método descrito no item 2.6.2, seguindo todas as orientações e condições impostas pela NBR 6123 (ABNR, 1988).

Inicialmente, definiu-se a velocidade básica do vento com base no mapa de isopletas (ver Figura 2.17), considerando a localização das edificações, que se encontram em Cajazeiras-PB. Posteriormente, determinou-se o fator topográfico, supondo-se que o terreno analisado é plano ou fracamente acidentado.

Para a determinação do fator S_2 , fez-se algumas considerações. Foi admitido que a área analisada apresenta um grande número de edificações, nesse contexto, adotou-se para a categoria de rugosidade do terreno como IV. E como a edificação apresenta dimensões inferiores à 20 metros, ela se enquadrou na Classe A. Definidas essas características, determinou-se os parâmetros meteorológicos (ver Tabela 2.6), e posteriormente, executou-se o cálculo do coeficiente S_2 (ver Eq. 2.16).

O fator estatístico foi determinado considerando a finalidade das edificações, se enquadrando no grupo 2 (ver Tabela 2.7).

Em posse dos fatores abordados, calculou-se a velocidade característica do vento (ver Eq. 2.12), e posteriormente, a sua pressão dinâmica (ver Eq. 2.17).

Tendo-se que as edificações analisadas são retangulares em que o vento incide perpendicularmente em suas fachadas, determinou-se os coeficientes de arrasto com base nos diagramas abordados no item 2.6.2.2. Para este caso, adotou-se que o vento se caracteriza como baixa turbulência (ver Figura 2.19), e definiu-se os coeficientes de arrastos para a angulação de 0° e 90° .

Para a determinação das áreas de influência dos pilares, fez-se uma análise por pavimento, considerando os pontos médios das distâncias entre os elementos estruturais. Com essas características definidas, calculou-se a força de arrasto por pavimento (ver Eq. 2.18).

Porém, desejou-se determinar a força em decorrência da ação do vento em cada nó dos pilares, adotando-se a metodologia empregada pelo software TQS na distribuição desses esforços. Segundo Moncayo (2011), tem-se que a força calculada para cada pilar é distribuída metade para o nó superior e a outra metade para o inferior, com exceção do primeiro piso acima do térreo, que irá receber toda a força no nó superior.

Após a determinação dos carregamentos, fez-se as combinações das ações para o estado limite último, empregando a equação 2.19. Sendo os coeficientes de majoração definidos com base nas Tabelas 2.8 e 2.9.

Para a realização desse estudo, foram consideradas quatro combinações, admitindo como cargas permanentes o peso próprio da estrutura, dos revestimentos, das alvenarias, forros e impermeabilização. E como cargas variáveis, a ação do vento e a sobrecarga.

3.6 DESCRIÇÃO DA MODELAGEM NUMÉRICA

Na realização das simulações numéricas, optou-se por utilizar o SAP 2000, com este software realizou-se os estudos dos pórticos planos e espaciais das duas edificações.

3.6.1 Considerações para a modelagem dos Pórticos Espaciais

Inicialmente, definiu-se os materiais dos elementos estruturais. Por se tratar de uma estrutura de concreto armado, inseriu-se as propriedades desse material (módulo de elasticidade, resistência característica, massa específica). Posteriormente foi definido as seções das vigas, pilares e lajes.

Após inserir todos os elementos estruturais e definir suas propriedades, selecionou-se os nós da extremidade inferior dos pilares do térreo, e fez-se a restrição dos esforços. Optando por empregar engastes, já que, não foi realizado um estudo das fundações.

Com a determinação das lajes fez-se a sua discretização, que consiste na sua subdivisão de diversos alinhamentos de barras. Segundo Kimura (2007), tem-se que o recomendado é que se adote barras de laje com comprimento máximo equivalente a 50 cm. Optou-se por empregar esta dimensão nas barras das grelhas.

Salienta-se que algumas grelhas não ficaram com a dimensão exata de 50 cm, devido algumas dimensões não serem múltiplas desse valor. Porém, o software realizou essa divisão automaticamente.

É importante abordar, que devido a diferença das dimensões dos elementos estruturais, não ocorreu a coincidência dos eixos das vigas e dos pilares. Segundo Corrêa (1991), para esses casos pode-se empregar os trechos rígidos (ver Figura 3.4), que consistem em elementos infinitamente rígidos que ligam os elementos estruturais, usualmente designados como "offsetes". Caso o modelo não admita essas dimensões, podem ocorrer erros significativos na análise do comportamento da estrutura.

Figura 3.4 - Indicação dos trechos rígidos nos pórticos espaciais.

Para a realização desse projeto adotou trechos rígidos com seção quadricular de lado 10 cm, e seu comprimento definido de acordo com a diferença entre os eixos das vigas e pilares.

Posteriormente, inseriu-se todos os carregamentos atuantes na estrutura, tais como: ação do vento, cargas permanentes e cargas variáveis. Porém, não foi necessário definir o peso próprio dos elementos estruturais, já que, o software determina essas ações automaticamente.

Ao inserir os carregamentos, as cargas provenientes das alvenarias foram distribuídas linearmente, as ações do vento são dadas por cargas pontuais e os demais, foram inseridos como carregamentos distribuídos uniformemente por área.

Finalizadas estas etapas, definiu-se as combinações e iniciou-se a simulação da análise estrutural. Em seguida, coletou-se os esforços atuantes nos nós dos pilares, assim como os deslocamentos devido as ações horizontais, para o cálculo do parâmetro γ_Z .

3.6.2 Considerações para a modelagem dos Pórticos Planos

As etapas iniciais da simulação dos pórticos planos foram realizadas de forma similar, definindo as características iniciais da estrutura analisada.

Conforme foi abordado no item 2.4.5, para a realização da análise de pórticos planos, há a possibilidade de elaborar a associação de pórticos que estão na mesma direção, empregando barras articuladas nas extremidades, com o objetivo de simular os efeitos das lajes.

É importante salientar que, para essas barras adotou-se um material intitulado "seda", que dispunha de uma massa específica nula, para que não houvesse a influência do peso próprio desses elementos nos esforços finais. Para essas barras, estabeleceu-se o comprimento e largura de um metro, e a espessura equivalente à das lajes.

Para a consideração dos carregamentos provenientes das lajes nos pórticos planos, adotou-se a metodologia proposta por Araujo (2014b), em que se admite lajes retangulares apoiadas ao longo de todo o contorno e submetidas a uma carga p uniformemente distribuída. Para a aplicação desse método foram empregadas as Tabelas A2.1 e A2.2 (páginas 367 e 368, respectivamente) definidas pelo autor supracitado, que fornecem os coeficientes para a realização do cálculo das reações de apoio. Para tanto, teve-se como parâmetro de entrada a razão das dimensões dos lados das lajes.

De acordo com Araujo (2014b), tem-se que as reações de apoio por unidade de comprimento são dadas pelo produto entre os coeficientes tabelados, a carga uniformemente distribuída e a dimensão do lado da laje adotado como referência.

As demais etapas, foram realizadas de acordo com o item 3.6.1, não ocorrendo mais variantes.

3.7 CÁLCULO DO PARÂMETRO γz

De acordo com França Junior (2015), tem-se que a partir da análise de primeira ordem é possível determinar o parâmetro γ_Z , para as diferentes direções analisadas da edificação, admitindo-se os valores de rigidez a partir da não linearidade física e os deslocamentos majorados decorrentes dos esforços.

Como as edificações analisadas são retangulares, considerou-se apenas duas direções, para os ângulos de 0° e 90°. Inicialmente, calculou-se o momento de tombamento (M_{1,tot,d}), que é dado pela soma dos produto da ação horizontal (força do vento) com relação a base da estrutura.

Posteriormente, calculou-se o $\Delta M_{tot,d}$, que é dado pelo produto das forças verticais atuantes na estrutura pelo deslocamento resultante das ações horizontais. Porém, para a coleta dos deslocamentos foi realizado a redução da rigidez dos elementos (ver Eq. 2.35). Em posse desses dados, calculou-se o parâmetro γ_Z , que é dado pela expressão 2.28.

4. ANÁLISES E DISCUSSÕES DOS RESULTADOS

4.1 RESULTADOS DO PRÉ-DIMENSIONAMENTO E DETALHAMENTO

Conforme disposto no item 3.4, realizou-se o dimensionamento dos elementos estruturais. Obteve-se lajes com espessura de 10 cm (ver Apêndice A).

É importante salientar que os valores obtidos são destinados para nortear a realização do presente estudo. Em uma situação real, o projetista precisa verificar se as seções definidas são compatíveis com as solicitações impostas a edificação, realizando uma análise estrutural cabível a situação.

Nos Anexos B, C e D constam os dados considerados para o dimensionamento das vigas e pilares, respectivamente. Em posse desses resultados, definiu-se as plantas de fôrmas das duas edificações (ver Figuras 4.1 e 4.2)

Percebe-se que as dimensões dos pilares na edificação simétrica se distribuíram de forma uniforme. Porém, para a segunda edificação, obteve-se uma maior variedade de seções. Isso ocorreu, devido a discrepância entre as áreas de influência de cada pilar.

V1 (15x35) P3 (15x25) P1 (15x25) P2 (15x30) LAJE 01 LAJE 02 h = 10 cm h = 10 cmV2 (15x30) P4 (15x30) P6 (15x30) P5 (15x45) LAJE 04 LAJE 03 \triangle B h = 10 cmh = 10 cm V3 (15x30) R7 (15x30) P9 (15x30) P8 (15x45) LAJE 05 h = 10 cm74 (15x30) P10 (15x30) P11 (15x45) P12 (15x30) LAJE 06 LAJE 07 h = 10 cm h = 10 cm V5 (15x30) P13 (15x30) P15 (15x30) P14 (15x45) LAJE 08 LAJE 09 h = 10 cmh = 10 cm V9 (15x35) V7 (15x35) V8 (15x30) V6 (15x35) P18 (15x25) P16 (15x25) P17 (15x30)

Figura 4.1 - Planta de Fôrma do Pavimento Tipo - Edifício Simétrico (sem escala).

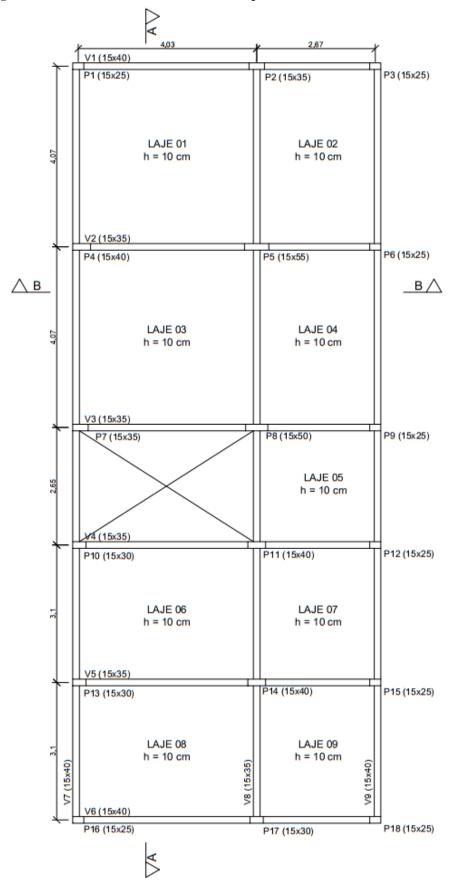


Figura 4.2 - Planta de Fôrma do Pavimento Tipo - Edifício Assimétrico (sem escala).

4.2 RESULTADOS DO LEVANTAMENTO DAS AÇÕES

Conforme foi citado anteriormente, adotou-se para o concreto armado o peso específico aparente de 25 kN/m³, empregando este dado na determinação do peso próprio dos elementos estruturais.

Para a alvenarias adotou-se tijolos cerâmicos furados ($\gamma = 13 \text{ kN/m}^3$) com espessura de 9 cm, e revestimentos nos dois lados da alvenaria com 3cm de espessura, admitindo uma argamassa de cimento e areia ($\gamma = 21 \text{ kN/m}^3$). Foi empregado o mesmo tipo de argamassa para a consideração do nivelamento inferior das lajes. Para o revestimento de teto nas lajes, empregou-se uma argamassa de cal, cimento e areia ($\gamma = 19 \text{ kN/m}^3$), enquanto no revestimento de pisos de edifícios residenciais, adotou-se o carregamento de 1 kN/m².

Com relação ao forro, foi considerado gesso em placas (incluindo estrutura de suporte), resultando em uma carga distribuída de 0,15 kN/m². Admitiu-se ainda a presença de impermeabilização com manta asfáltica na cobertura, dispondo de uma carga de 0,08 kN/m².

A Tabela 4.1, apresenta um resumo geral das espessuras adotadas e das massas específicas dos materiais.

Tabela 4.1 - Resumo das espessuras e massas específicas dos elementos com cargas permanentes.

Elemento	Material	Espessura (m)	Massa específica (kN/m³)	Carga (kN/m²)
Bloco cerâmico vazado	Blocos artificiais	0,09	13	1,17
Revestimento das alvenarias	Argamassa de cimento e areia	0,03	21	0,63
Revestimentos de pisos	Para pisos residenciais e comerciais	0,05	20	1
Nivelamento inferior da laje	Argamassa de cimento e areia	0,02	21	0,42
Forro	Gesso em placas, com estrutura de suporte	0,012	12,5	0,15
Impermeabilização	Manta asfáltica simples	0,003	26,67	0,08

Fonte: Adaptado de NBR 6120 (ABNT, 2018).

Para as cargas variáveis, a NBR 6120 (ABNT, 2018), determina um carregamento de 1,5 kN/m² para os pavimentos tipos residenciais e 1,0 kN/m² para as coberturas das edificações.

Esses carregamentos foram inseridos respeitando quatro tipos de combinações, que foram aplicados para os dois modelos estruturais utilizados na realização deste estudo (ver Tabela 4.2).

Tabela 4.2 - Determinação das combinações para ELU.

Identificação	Especificação dos parâmetros	Formulação das Combinações
Combinação 01	Fd1=1,4*PP+1,4*CP+1,4*(SC+0,6*VENTO 0°)	Fd1=1,4*PP+1,4*CP+1,4*SC+0,84*VENTO 0°
Combinação 02	Fd2=1,4*PP+1,4*CP+1,4*(VENTO 0°+0,5*SC)	Fd2=1,4*PP+1,4*CP+1,4*VENTO 0°+0,7*SC
Combinação 03	Fd3=1,4*PP+1,4*CP+1,4*(SC+0,6*VENTO 90°)	Fd3=1,4*PP+1,4*CP+1,4*SC+0,84*VENTO 90°
Combinação 04	Fd4=1,4*PP+1,4*CP+1,4*(VENTO 90°+0,5*SC)	Fd4=1,4*PP+1,4*CP+1,4*VENTO 90°+0,7*SC

Fonte: Adaptado de NBR 6120 (ABNT,2018).

Na Tabela 4.2, as siglas presentes nas formulações significam:

- PP Peso próprio;
- CP Carga permanente;
- SC Sobrecarga;
- VENTO 0° Vento à 0°;
- VENTO 90° Vento à 90°.

4.2.1 Distribuição dos esforços verticais nos Pórticos Planos

Conforme descrito no item 3.6.2, definiu-se os esforços nos pórticos planos como uma carga distribuída linear. Nesse caso, determinou-se os carregamentos para cada viga (ver Tabelas 4.3, 4.4, 4.5 e 4.6), considerando o pavimento tipo e a cobertura de cada edificação.

Para realizar a associação dos pórticos, adotou-se dois sentidos. O primeiro sentido, y, corresponde a linha de corte A-A, e o segundo sentido, x, corresponde a linha de corte B-B (ver Figuras 4.1 e 4.2).

Tabela 4.3 - Distribuição dos carregamentos na direção x, considerando pórticos planos - Edificação Simétrica.

Vigas	U	ermanente N/m)	Carga Variável (kN/m)		
	Pavimento Tipo	Cobertura	Pavimento Tipo	Cobertura	
1	2,242	2,049	0,826	0,551	
2	9,036	8,259	3,330	2,220	
3	8,718	7,968	3,213	2,142	
4	8,718	7,968	3,213	2,142	
5	9,036	8,259	3,330	2,220	
6	2,242	2,049	0,826	0,551	

Tabela 4.4 - Distribuição dos carregamentos na direção y, considerando pórticos planos - Edificação Simétrica.

Loios	Vigas		ermanente N/m)	Carga Variável (kN/m)		
Lajes	v igas	Pavimento Tipo	Cobertura	Pavimento Tipo	Cobertura	
Laina	7	2,242	2,049	0,826	0,551	
Lajes 1,2,8,9	8	9,354	8,550	3,448	2,298	
1,2,0,7	9	2,242	2,049	0,826	0,551	
ъ :	7	1,453	1,328	0,536	0,357	
Demais lajes	8	7,334	6,703	2,703	1,802	
	9	1,453	1,328	0,536	0,357	

Tabela 4.5 - Distribuição dos carregamentos na direção x, considerando pórticos planos - Edificação Assimétrica.

Vi ana	Laina		ermanente N/m)	Carga Variável (kN/m)		
Vigas	Lajes	Pavimento Tipo	Cobertura	Pavimento Tipo	Cobertura	
V1	L1	2,687	2,456	0,990	0,660	
V 1	L2	2,440	2,230	0,899	0,600	
V2	L1/L3	10,830	9,899	3,991	2,661	
V Z	L2/L4	8,850	8,089	3,262	2,175	
V3	L3/Escada	9,366	8,561	3,452	2,301	
V 3	L4/L5	7,556	6,907	2,785	1,857	
V4	Escada/L6	8,747	7,995	3,224	2,149	
V 4	L5/L7	7,135	6,521	2,630	1,753	
V5	L6/L8	9,766	8,926	3,599	2,399	
VJ	L7/L9	7,786	7,116	2,869	1,913	
VI6	L8	2,637	2,410	0,972	0,648	
V6	L9	1,996	1,825	0,736	0,491	

Tabela 4.6 - Distribuição dos carregamentos na direção y, considerando pórticos planos - Edificação Assimétrica.

Vigor	Laing		ermanente N/m)		/ariável /m)
Vigas	Lajes	Pavimento Tipo	Cobertura	Pavimento Tipo	Cobertura
	L1	2,687	2,456	0,990	0,660
	L3	1,741	1,592	0,642	0,428
V7	Escada	1,079	0,986	0,398	0,265
	L6	1,262	1,153	0,465	0,310
	L8	2,019	1,845	0,744	0,496
	L1/L2	9,488	8,672	3,497	2,331
	L3/L4	7,268	6,643	2,678	1,786
V8	Escada/L5	5,630	5,146	2,075	1,383
	L6/L7	6,197	5,664	2,284	1,523
	L8/9	8,219	7,512	3,029	2,019
	L2	1,763	1,612	0,650	0,433
	L4	1,109	1,014	0,409	0,273
V9	L5	1,132	1,035	0,417	0,278
	L7	1,131	1,034	0,417	0,278
	L9	1,808	1,652	0,666	0,444

4.2.2 Distribuição dos esforços verticais nos Pórticos Espaciais

As cargas provenientes das alvenarias foram definidas considerando uma altura de 2,9 metros, que corresponde ao pé esquerdo da edificação, ou seja, a distância entre a parte superior do piso e a parte inferior da laje, distribuídas pelos setores que apresentavam paredes, contabilizando um carregamento linear de 6,6207 kN/m.

A cargas permanentes dos pavimentos tipo (revestimentos de pisos, nivelamento inferior da laje, forro) resultaram em 1,57 kN/m², enquanto os carregamentos atuantes na cobertura (revestimento inferior da laje, revestimento do teto nas lajes, forro e impermeabilização) corresponderam a 1,22 kN/m².

4.2.3 Distribuição dos esforços da ação do vento

Conforme abordado no item 3.5, definiu-se os carregamentos provenientes da ação do vento. A tabela 4.7 apresenta todos os parâmetros considerados para a determinação da pressão dinâmica do vento.

Tabela 4.7 - Pressão dinâmica do vento.

Pavimento	Nível (m)	S1	S2	S3	Vo (m/s)	Vk (m/s)	q (kN/m²)
Térreo	3	1	0,744	1	30	22,329	0,306
Tipo I	6	1	0,809	1	30	24,266	0,361
Tipo II	9	1	0,849	1	30	25,476	0,398
Tipo III	12	1	0,879	1	30	26,371	0,426
Tipo IV	15	1	0,903	1	30	27,086	0,450

Os apêndices E, F, G e H apresentam os carregamentos horizontais provenientes da ação no vento, nos nós de cada pilar, admitindo a incidência dessas ações nos ângulos de 0° e 90°.

4.3 RESULTADOS DA MODELAGEM NUMÉRICA

4.3.1 Determinação dos modelos nas simulações

Realizados os passos descritos no tópico 3.6, fez-se a modelagem numérica para os pórticos espaciais e pórticos planos. Para os pórticos espaciais, foi obtida a modelagem em 3D (ver Figura 4.3).

Figura 4.3 - Representação dos Pórticos Espaciais com grelhas.

Com relação aos pórticos planos, gerou-se duas associações para cada edificação. Tendo-se a primeira associação com relação ao plano x-z e a segunda, referente ao plano y-z (ver Figuras 4.4 e 4.5).

Figura 4.4 - Representação dos Pórticos Planos na direção x.

Fonte: Autoria própria (2020).

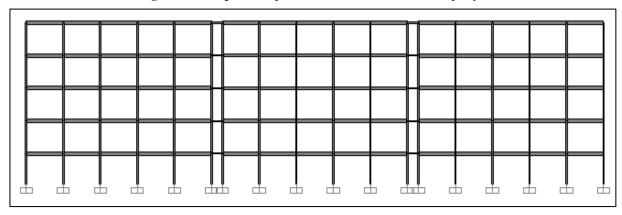


Figura 4.5 - Representação dos Pórticos Planos na direção y.

Fonte: Autoria própria (2020).

4.3.2 Comparativos entre os esforços dos pórticos planos e pórticos espaciais

Ao definir as variações dos esforços dos pórticos planos e espaciais, observou-se que as discrepâncias apresentavam um mesmo comportamento de acordo com a posição do pilar (canto, externo ou interno). Para os pilares de canto e extremos (desconsiderando o vão central), obteve-se variações máximas de aproximadamente 20 kN, para as duas edificações. Porém, considerando os pilares centrais (ligados pela viga 08), obteve-se discrepâncias acentuadas, de 120,31 kN e 92 kN para as edificações simétrica e assimétrica, respectivamente.

As figuras 4.6 e 4.7, apresentam os carregamentos axiais de todos os pilares no pavimento térreo, considerando a primeira combinação para os pórticos planos e espaciais nos edifícios simétrico e assimétrico, respectivamente.

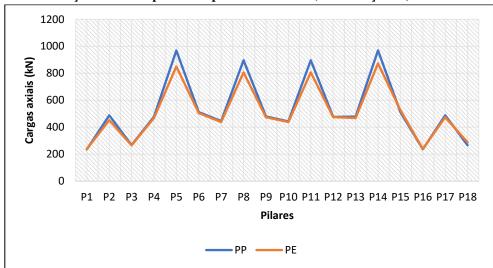


Figura 4.6 - Esforços axiais nos pilares do pavimento térreo (Combinação 01) - Edifício Simétrico.

Fonte: Autoria própria (2020).

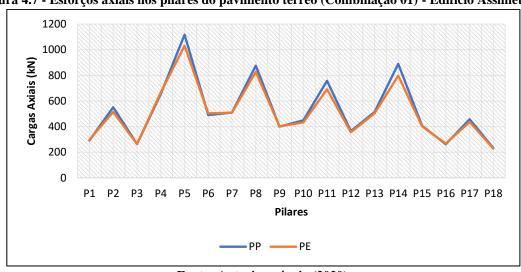


Figura 4.7 - Esforços axiais nos pilares do pavimento térreo (Combinação 01) - Edifício Assimétrico.

Fonte: Autoria própria (2020).

Percebe-se que para as duas edificações, obteve-se um comportamento bastante similar, ocorrendo picos de discrepância nos pilares centrais, que concentram maiores cargas.

É importante salientar que na verificação das variações, os pórticos planos apresentaram, na sua maioria, valores mais elevados de esforços, comparados os pórticos espaciais. Ressalta-se que para fins de utilização, recomenda-se que os dados provenientes dos

pórticos espaciais devem ser adotados como referência, já que, apresentam uma maior precisão em seus resultados.

4.4 ANÁLISE DOS PILARES

Realizou-se ainda uma análise de alguns pilares das edificações, com o objetivo de efetuar um estudo mais detalhado. Nesse contexto, selecionou-se três pilares de cada edificação, usando como condição de escolha, aqueles que apresentavam maiores variações de acordo com a sua localização. Esses valores foram definidos realizando a diferença entre os carregamentos axiais atuantes nos pilares dos pórticos planos e pórticos espaciais, respectivamente.

4.4.1 Análise dos pilares da Edificação Simétrica

Nesta etapa, selecionou-se os pilares 2, 5 e 18, que apresentam as respectivas seções em centímetros: 15x30, 15x45 e 15x25. Ao analisar a planta de fôrma, percebeu-se que o primeiro pilar é dito como externo, o segundo é definido como interno, e o último como externo de canto.

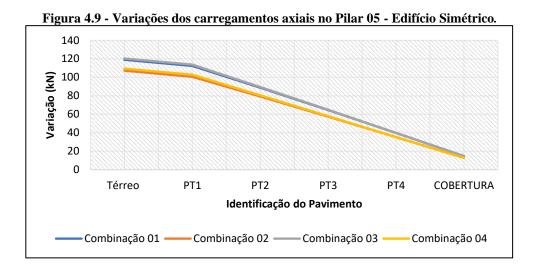
Nos Apêndices I e J são apresentados os carregamentos axiais nos nós de todos os pilares. Com base nesses dados, elaborou-se a análise dos pilares citados. O Apêndice K, mostra as variações de todos os carregamentos coletados.

Na Tabela 4.8, é apresentado um resumo das variações dos carregamentos axiais atuantes nos pilares 02, 05 e 18. É importante salientar, que as porcentagens foram definidas considerando como referência, os valores gerados pelos pórticos planos.

Tabela 4.8 – Variações dos carregamentos axiais nos pilares 02, 05 e 18 – Edifício Simétrico.

Dilon	Dovim anta	Varia	ção 01	Varia	ção 02	Varia	ção 03	Varia	ção 04
Pilar	Pavimento	kN	%	kN	%	kN	%	kN	%
	Térreo	35,44	7%	34,58	7%	24,06	5%	15,76	3%
	PT1	30,99	6%	30,27	7%	19,61	4%	11,31	3%
PILAR	PT2	24,4	7%	23,67	7%	17,44	5%	12,06	4%
02	PT3	17,17	7%	16,58	7%	13,63	5%	10,67	4%
	PT4	9,46	6%	9,05	6%	8,24	5%	7,01	5%
	COBERTURA	1,25	3%	1,1	3%	1,08	2%	0,83	2%
	Térreo	118,99	12%	107,2	12%	120,31	12%	109,39	12%
	PT1	112,33	12%	100,53	11%	113,63	12%	102,72	12%
PILAR	PT2	88,78	12%	79,18	12%	89,53	12%	80,43	12%
05	PT3	64,6	12%	57,47	12%	64,89	12%	57,95	12%
	PT4	39,81	12%	35,26	12%	39,86	12%	35,35	12%
	COBERTURA	14,77	13%	12,86	13%	14,75	13%	12,81	13%
	Térreo	-22,21	-8%	-15,48	-6%	-16,18	-6%	-5,43	-2%
	PT1	-25,91	-10%	-19,19	-7%	-19,88	-8%	-9,13	-4%
PILAR	PT2	-26,65	-13%	-20,6	-10%	-23,03	-12%	-14,56	-8%
18	PT3	-2,73	-2%	-2,26	-2%	-3,08	-2%	0,49	0%
	PT4	-4,63	-6%	-3,11	-4%	-4,06	-5%	-2,17	-3%
	COBERTURA	-4,08	-18%	-3,47	-16%	-4,01	-18%	-3,35	-16%

O pilar 02, que está localizado no vão central da viga 01, apresentou variações consideráveis nos carregamentos axiais, quando comparado aos demais pilares externos. Cada variação dada pela diferença dos carregamentos axiais entre os pórticos plano e espacial, de acordo com a sua respectiva combinação. Para obter-se uma melhor visualização destas variações, apresentou-se graficamente as diferenças entres os carregamentos (ver Figura 4.8).


40
(N) 30
20
20
Térreo PT1 PT2 PT3 PT4 COBERTURA
Identificação do Pavimento

Combinação 01 — Combinação 02 — Combinação 03 — Combinação 04

Figura 4.8 - Variações dos carregamentos axiais no Pilar 02 - Edifício Simétrico.

Percebe-se que o térreo apresenta maiores variações, levando-se em conta que neste setor ocorrerá uma maior concentração de cargas. As combinações 01 e 02, apresentaram maiores discrepâncias e um comportamento similar. Porém, notou-se que para as combinações 03 e 04, tem-se uma diferença nos comportamentos, devido as menores variações presentes no pavimento térreo.

O pilar 05, presente no interior na edificação, apresenta maiores carregamentos, devido a sua localização central, e portanto, também se notou maiores variações (ver Figura 4.9).

Fonte: Autoria própria (2020).

Apesar das maiores variações iniciais, tem-se que as combinações apresentaram comportamentos semelhantes, com variações pequenas.

O pilar 18, que corresponde a um pilar de canto, apresentou maiores carregamentos axiais nos pórticos espaciais (variação negativa), diferentemente dos outros casos analisados (ver Figura 4.10).

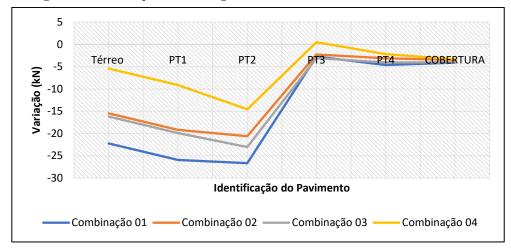


Figura 4.10 - Variações dos carregamentos axiais no Pilar 18 - Edifício Simétrico.

4.4.2 Análise dos pilares da Edificação Assimétrica

Com relação a edificação assimétrica, selecionou-se os pilares 2, 10 e 14, que apresentam as respectivas seções: 15x35, 15x30 e 15x40.

Nos apêndices L e M são apresentados os carregamentos axiais nos nós de todos os pilares. E no Apêndice N, tem-se as variações desses carregamentos.

Na Tabela 4.9, é apresentado um resumo das variações dos carregamentos axiais atuantes nos pilares 02, 10 e 14. É importante salientar, que as porcentagens foram definidas considerando como referência, os valores gerados pelos pórticos planos.

Tabela 4.9 - Variações dos carregamentos axiais nos pilares 02, 10 e 14 - Edifício Assimétrico.

D!1	Dominu and a	Variaçã	io 01	Variaç	ão 02	Varia	ção 03	Variaç	ão 04
Pilar	Pavimento	kN	%	kN	%	kN	%	kN	%
	Térreo	36,33	7%	34,97	7%	26,67	5%	18,86	4%
	PT1	31,18	6%	29,82	6%	21,51	4%	13,72	3%
PILAR	PT2	22,81	5%	21,75	6%	16,83	4%	11,77	3%
02	PT3	15,6	5%	14,91	5%	12,58	4%	9,86	4%
	PT4	8,39	5%	8	5%	7,28	4%	6,13	4%
	COBERTURA	0,57	1%	0,42	1%	0,38	1%	0,12	0%
	Térreo	15,93	4%	18,13	4%	16,62	4%	19,31	4%
	PT1	11,52	3%	13,72	3%	12,21	3%	14,9	3%
PILAR	PT2	17,13	5%	8,87	3%	7,36	2%	9,26	3%
10	PT3	3,56	1%	4,87	2%	3,43	1%	4,63	2%
	PT4	0,51	0%	1,32	1%	0,25	0%	5,61	4%
	COBERTURA	-2,11	-5%	-1,74	-4%	-2,3	-5%	-2,08	-5%
	Térreo	92,53	10%	82,6	10%	91,06	10%	80,14	10%
	PT1	86,65	10%	76,72	10%	85,18	10%	74,26	9%
PILAR	PT2	69,63	10%	61,33	10%	69,35	10%	60,87	10%
14	PT3	51,39	11%	45,15	10%	51,73	11%	45,68	10%
	PT4	32,17	11%	28,13	10%	32,69	11%	29	11%
	COBERTURA	11,96	12%	10,24	11%	12,31	12%	10,82	12%

O pilar 02 apresentou um comportamento do mesmo pilar para a edificação simétrica, dispondo de uma variação semelhante para as combinações 01 e 02 (ver Figura 4.11).

40 35 Variação (kN) 25 20 15 10 PT1 Térreo PT2 PT3 PT4 **COBERTURA** Identificação do Pavimento Combinação 01 — — Combinação 02 — Combinação 03 — Combinação 04

Figura 4.11- Variações dos carregamentos axiais no Pilar 02 - Edifício Assimétrico.

Fonte: Autoria própria (2020).

Com relação ao pilar 14, obteve-se picos de variação fora dos nós localizados no pavimento térreo (ver Figura 4.12). Note que a combinação 01 apresentou máximo local no

segundo pavimento tipo, enquanto a combinação 04 ocorreu no quarto pavimento tipo. As combinações 02 e 03 apresentaram variações com comportamento similar.

25 20 Variação (kN) 15 10 0 COBERTURA Térreo PT1 PT2 PT3 -5 Identificação do Pavimento Combinação 01 Combinação 02 — Combinação 03 -Combinação 04

Figura 4.12 - Variações dos carregamentos axiais no Pilar 10 - Edifício Assimétrico.

Fonte: Autoria própria (2020).

O pilar 14 apresentou a maior diferença entre as variações, chegando a atingir 92,53 kN. Percebe-se que as combinações 01 e 03 apresentaram um comportamento bastante similar, tendo-se a mesma situação para as combinações 02 e 04 (ver Figura 4.13).

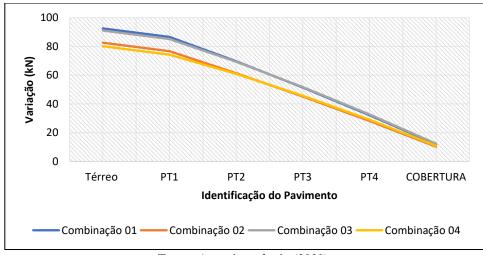


Figura 4.13 - Variações dos carregamentos axiais no Pilar 14 - Edifício Assimétrico.

Fonte: Autoria própria (2020).

Esperava-se que o pilar 05 apresenta-se uma maior variação, já que, apresenta a maior seção e é responsável por suportar a maior carga, porém, essa situação não foi registrada.

4.5 ANÁLISE DO PARÂMETRO γ_Z

Conforme descrito no item 3.7, obteve-se os valores do parâmetro γ_Z considerando os dois objetos de estudo, e tendo em conta apenas o vento à 0° (ver Tabelas 4.10 e 4.11). Nos Apêndices O, P, Q e R, são apresentados os deslocamentos considerados para a determinação do ΔM tot,d.

Tabela 4.10 – Parâmetro γz - Edifício Simétrico.

Pórtico	Combinação	Ação variável principal	M1,tot,d (kN/m)	ΔMtot,d (kN/m)	Parâmetro γz	Classificação
Pórtico	Combinação 1	Sobrecarga de utilização	882,17529	184,19539	1,26390	Nós móveis
plano	Combinação 2	Ação do vento a 0°	1470,29215	289,00938	1,24466	Nós móveis
Pórtico	Combinação 1	Sobrecarga de utilização	882,17529	174,25569	1,24615	Nós móveis
espacial	Combinação 2	Ação do vento a 0°	1470,29215	270,74184	1,22570	Nós móveis

Fonte: Autoria própria (2020).

Tabela 4.11 – Parâmetro γz - Edifício Assimétrico.

Pórtico	Combinação	Ação variável principal	M1,tot,d (kN/m)	ΔMtot,d (kN/m)	Parâmetro γz	Classificação
Pórtico	Combinação 1	Sobrecarga de utilização	882,17529	141,05108	1,19032	Nós móveis
plano	Combinação 2	Ação do vento a 0°	1470,29215	252,96573	1,20780	Nós móveis
Pórtico	Combinação 1	Sobrecarga de utilização	882,17529	136,92871	1,18374	Nós móveis
espacial	Combinação 2	Ação do vento a 0°	1470,29215	213,11408	1,16952	Nós móveis

Fonte: Autoria própria (2020).

Percebe-se que os valores do parâmetro para as combinações 1 e 2, se encontram no intervalo $1,1 \le \gamma_Z \le 1,3$, indicando que os nós dos pilares são móveis. Nota-se ainda, que os momentos de tombamento para as duas edificações são equivalentes, já que, os objetos de estudo apresentam as mesmas dimensões externas.

Porém, para as combinações 3 e 4, obteve-se parâmetros com valores superiores à 1,3. Para essas combinações é admitido a ação do vento atuante à 90°, que ocorre em paralelo com a menor espessura dos pilares. Esses valores são justificados devido ao momento de tombamento e momento gerado pelas ações verticais multiplicadas pelos deslocamentos horizontais, serem relativamente aproximados, resultando em uma razão próxima de um.

Considerando os valores do parâmetro superiores à 1,3, em um caso prático, recomendase que seja realizado um redimensionamento dos pilares, aumentando a sua espessura, com o objetivo de garantir uma maior estabilidade. Caso buscasse realizar o dimensionamento dos elementos estruturais, seria necessário considerar os efeitos globais e locais de 2^a ordem. Segundo a NBR 6118 (ABNT, 2014), uma solução aceitável para o designío dos esforços globais, consiste em avaliar os esforços finais a partir da majoração adicional dos esforços horizontais considerando 0,95 γ_Z .

É importante salientar, que não foi considerado os efeitos da imperfeição global do edifício, que em uma direção pode ser preponderante.

5. CONSIDERAÇÕES FINAIS

É notório, que a realização da análise estrutural de uma edificação é de suma importância, cabendo ao engenheiro visualizar da forma correta toda a distribuição de esforços nos elementos estruturais do objeto avaliado.

O presente trabalhou elaborou uma análise do comportamento dos esforços axiais nos pilares de duas edificações, considerando dois modelos estruturais: pórtico plano e pórtico espacial.

Ao realizar a coleta dos esforços nos nós dos pilares, observou-se que as maiores discrepâncias entre os carregamentos dos pórticos plano e espacial, estão concentradas nos pilares centrais. Salienta-se que esses pilares tendem a apresentar as maiores seções devido aos carregamentos elevados nessas regiões.

Para a maioria dos valores coletados, observou-se que os pórticos planos apresentaram resultados mais elevados, quando comparados aos pórticos espaciais. Porém, recomenda-se que sejam admitidos os valores dos segundos com referência, já que, essa tipologia de modelo estrutural apresenta uma maior precisão em seus resultados. É importante salientar, que as variações registradas estão em concordância com outros trabalhos, mesmo apresentando valores elevados em alguns pilares.

Realizando um comparativo entre os dois objetos de estudo, a edificação com simetria em planta e a edificação assimétrica, observou-se que os carregamentos axiais apresentaram comportamentos bastante semelhantes para os dois casos avaliando a situação geral.

Com a análise realizada pelo parâmetro γ_Z , tem-se que em uma situação real os elementos estruturais deveriam ser redimensionados, considerando as combinações 03 e 04, que geraram valores superiores à 1,3. Com relação as 01 e 02, obteve-se nós móveis em toda estrutura, devendo-se admitir os efeitos globais e locais de 2^a ordem.

Em síntese, o trabalho realizado apresentou resultados satisfatórios atendendo-se aos objetivos iniciais.

REFERÊNCIAS

ARAÚJO, J. M. Curso de concreto armado. 4. Ed. Rio Grande: Dunas, 2014a, vol. 1.

ARAÚJO, J. M. Curso de concreto armado. 4. Ed. Rio Grande: Dunas, 2014b, vol. 2.

ARAUJO, Silas Oliveira. **Análise da estabilidade global de estruturas de concreto armado da cidade de Goiânia.** 2016. Trabalho de Conclusão de Curso (Engenharia Civil) — Universidade Federal de Goiás, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6120**: Cargas para o cálculo de estruturas de edificações. Rio de Janeiro: ABNT, ago. 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8522**: Concreto – Determinação dos módulos estáticos de elasticidade e de deformação à compressão. Rio de Janeiro: ABNT, nov. 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5739**: Concreto – Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro: ABNT, mai. 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8953**: Concreto para fins estruturais – Classificação pela massa específica, por grupos de resistência e consistência. Rio de Janeiro: ABNT, mar. 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5738**: Concreto – Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro: ABNT, fev. 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118**: Projeto de estrutura de concreto - Procedimento. Rio de Janeiro: ABNT, ago. 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8681**: Ações e segurança nas estruturas - Procedimento. Rio de Janeiro: ABNT, abr. 2004.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6123**: Forças devidas ao vento em edificações. Rio de Janeiro: ABNT, jun. 1988.

BARBOZA, Marcos Robiati. **Concepção e análise de estruturas de edifícios em concreto armado**. Relatório Final de Iniciação Científica – Faculdade de Engenharia, Universidade Estadual Paulista, Bauru, 2008.

BASTOS, Paulo Sérgio dos Santos. **Fundamentos do concreto armado**. Notas de aula — Departamento de Engenharia Civil, Universidade Estadual Paulista. Bauru, 2006.

BENINCÁ, Matheus Erpen. **Comparação entre modelos de análise estrutural de edifícios em concreto armado: estudo de caso**. 2016. Trabalho de Conclusão de Curso (Engenharia Civil) — Departamento de Engenharia Civil, Universidade Federal do Rio Grande do Sul, 2016.

CARMO, Regina Maria dos Santos. **Efeitos de segunda ordem em edifícios usuais de concreto armado.** 2006. Dissertação (Mestrado em Engenharia das Estruturas) — Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1995.

CARVALHO, Roberto Chust; FIGUEIREDO FILHO, Jasson Rodrigues. Cálculo e Detalhamento de Estruturas Usuais de Concreto Armado: segundo a NBR 6118:2014. 4. Ed. São Carlos: EdUFSCar, 2014.

CHAGAS, Daniel Pereira. **Análise comparativa entre modelos estruturais para edifícios de concreto armado.** 2012. Trabalho de Conclusão de Curso (Engenharia de Produção Civil) – Universidade Tecnológica Federal do Paraná, 2012.

CHÁVEZ, Ena Sosa. **Análise estrutural de edifício alto submetido às pressões flutuantes induzida pela ação do vento.** 2006. Dissertação (Mestrado em Engenharia das Estruturas) — Universidade Federal de Minas Gerais, Belo Horizonte, 2006.

CLÍMACO, João Carlo Teatini de Souza. **Estruturas de concreto armado**: fundamentos de projeto, dimensionamento e verificação. 2. ed. revisada. Brasília: Editora Universidade de Brasília: Finatec, 2008.

COMITÉ EURO- INTERNACIONAL DO BÉTON. **CEB – FIP:** Manual of buckling and instability. Lancaster, England. The Construction Press (Bulletin D' Information, n. 123), 1978.

CORRÊA, Márcio Roberto Silva. **Aperfeiçoamento de modelos usualmente empregados no projeto de sistemas estruturais de edifícios**. 1991. Tese (Doutorado em Engenharia Civil) — Universidade de São Paulo, São Carlos, 1991.

DUARTE, Heraldo. **Aspectos da análise estrutural das lajes de edifícios de concreto armado**. Dissertação (Mestrado) — Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 1998.

FONTES, Fernando Fernandes. **Análise estrutural de elementos lineares segundo a NBR 6118: 2003**. 2005. Dissertação (Mestrado em Engenharia das Estruturas) — Departamento de Estruturas, Universidade de São Paulo, São Carlos, 2005.

FRANÇA JUNIOR, Davidson de Oliveira. **Análise Estrutural de um edifício em concreto armado com quatro pavimentos: estudo de caso para diferentes modelos estruturais**. 2015. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Civil), Centro Universitário do Sul de Minas, Varginha, 2015.

FREITAS, Leandro Willian. **Análise estrutural de um edifício em concreto armado e proposta de um novo projeto estrutural – Estudo de caso.** 2016. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Civil) – Departamento Acadêmico de Construção Civil, Universidade Tecnológica Federal do Paraná, Pato Branco, 2016.

FREITAS, F. C. LUCHI, L. A. R, FERREIRA, W. G. Global stability analysis of structures and actions to control thei effects. **Ibracon Structures and Materials Journal.** v. 9, n° 2, p. 192 – 213, 2016.

GIL, Antonio Carlos. Como elaborar projetos de pesquisa. 4. Ed. São Paulo: Atlas, 2002.

GIONGO, José Samuel. **Concreto armado: projeto estrutural de edifícios.** 2007. São Carlos, Escola de Engenharia de São Carlos, Universidade de São Paulo, Notas de aula, Fev. 2007. Disponível em: https://pt.slideshare.net/bowmanguimaraes/projeto-estruturaldeedifcios-j-s-giongoeescturma22008. Acesso em: 26 fev. 2020.

KIMURA, Alio. **Informática aplicada em estruturas de concreto armado.** São Paulo: Pini, 2007.

LACERDA, Maiza Moana Silva. et al. Avaliação dos critérios para análise da estabilidade global em edifícios de concreto armado: Estudo de caso. **Revista eletrônica de Engenharia Civil**. Vol. 9. nº 2, 2014a.

LACERDA, Estéfane George Macedo. **Análise não linear de treliças pelo método dos elementos finitos posicional**. Dissertação (Mestrado) — Programa de pós-graduação em Engenharia Civil, Universidade Federal do Rio Grande do Norte, Natal, 2014b.

LINS, Fernando de Faroa Vecchio. Comparativos entre modelos estruturais integrados de análise, formados por pórtico espacial e grelha, aplicados em estruturas de concreto armado de edifícios de múltiplos pavimentos. 2010. Trabalho de Conclusão de Curso (Engenharia 8953Civil) — Departamento de Engenharia Estrutural e Construção Civil, Universidade Federal do Ceará, 2010.

MARTHA, Luiz Fernando. **Análise de estruturas**: conceitos e métodos básicos. Rio de Janeiro: Elsevier, 2010.

MELO, Carlos Eduardo Luna. **Análise estrutural com o SAP 2000**. Brasília, Faculdade de Arquitetura e Urbanismo – UNB, Departamento de Tecnologia, Notas de aula, Nov. 2016.

MONCAYO, Winston Junior Zumaeta. **Análise de segunda ordem global em edifícios com estrutura de concreto armado.** 2011. Tese (Mestrado em ciências) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2011.

PINTO, Rivelli da Silva; RAMALHO, Marcio Antonio. Não-linearidade física e geométrica no projeto de edifícios usuais de concreto armado. **Caderno de Engenharia de Estruturas**, São Carlos, n. 19, 2002.

PINHEIRO, L. M. Fundamentos do concreto e projeto de edifícios. 2007. Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2007.

SOBRINHO JÚNIOR, Antônio da Silva. α Global Instability Parameter: Origin, Evolution and Tendencies. **Revista InterScientia**, João Pessoa, v. 04, n° 01, p. 11 – 20, 2016.

SUSSEKIND, José Carlos. **Curso de Análise Estrutural**. 6. ed. Rio de Janeiro: Globo, 1981, vol. 1.

APÊNDICE A – Pré-dimensionamento das lajes.

	Laje	Nº de bordas engastadas	ly (m)	lx (m)	0.7*lY (m)	l*(m)	Altura útil - d (cm)	Diâmetro das barras - φ (cm)	Cobrimento - c (cm)	Espessura (cm)
	L1	2	3,4	3,4	2,38	2,38	5,474	0,1	2,5	8,024
	L2	2	3,4	3,4	2,38	2,38	5,474	0,1	2,5	8,024
TR	L3	2	3,4	3,4	2,38	2,38	5,474	0,1	2,5	8,024
SIMÉTRICO	L4	3	3,4	3,4	2,38	2,38	5,236	0,1	2,5	7,786
	L5	2	3,4	3,4	2,38	2,38	5,474	0,1	2,5	8,024
EDIFÍCIO	L6	2	3,4	3,4	2,38	2,38	5,474	0,1	2,5	8,024
FÍC	L7	3	3,4	3,4	2,38	2,38	5,236	0,1	2,5	7,786
DI	L8	2	3,4	3,4	2,38	2,38	5,474	0,1	2,5	8,024
<u> </u>	L9	2	3,4	3,4	2,38	2,38	5,474	0,1	2,5	8,024
00	L1	2	4,075	4,075	2,8525	2,8525	6,561	0,1	2,5	9,111
ASSIMÉTRICO	L2	2	4,075	2,725	2,8525	2,725	6,268	0,1	2,5	8,818
ÉT	L3	2	4,075	4,075	2,8525	2,8525	6,561	0,1	2,5	9,111
I I	L4	3	4,075	2,725	2,8525	2,725	5,995	0,1	2,5	8,545
\SS\	L5	2	2,65	4,075	1,855	1,855	4,267	0,1	2,5	6,817
0	L6	2	3,1	2,725	2,17	2,17	4,991	0,1	2,5	7,541
ÍCI	L7	3	3,1	4,075	2,17	2,17	4,774	0,1	2,5	7,324
EDIFÍCIO	L8	2	3,1	2,725	2,17	2,17	4,991	0,1	2,5	7,541
豆	L9	2	3,1	4,075	2,17	2,17	4,991	0,1	2,5	7,541

APÊNDICE B – Pré-dimensionamento das vigas.

	Viga	Situação do tramo	Comprimento do tramo (cm)	Altura calculada (cm)	Base (cm)	Dimensões adotadas (cm)
	V1	EXTERNO	340	34,0	15	15X35
	V2	INTERNO	340	28,3	15	15X30
TR	V3	INTERNO	340	28,3	15	15X30
SIMÉTRICO	V4	INTERNO	340	28,3	15	15X30
S	V5	INTERNO	340	28,3	15	15X30
	V6	EXTERNO	340	34,0	15	15X35
EDIFÍCIO	V7	EXTERNO	340	34,0	15	15X35
	V8	INTERNO	340	28,3	15	15X30
=	V9	EXTERNO	340	34,0	15	15X35
O _C	V1	EXTERNO	407,5	40,75	15	15X40
RIC	V2	INTERNO	407,5	33,95833	15	15X35
ÉT	V3	INTERNO	407,5	33,95833	15	15X35
I W	V4	INTERNO	407,5	33,95833	15	15X35
SSV	V5	INTERNO	407,5	33,95833	15	15X35
0	V6	EXTERNO	407,5	40,75	15	15X40
ÍCI	V7	EXTERNO	407,5	40,75	15	15X40
EDIFÍCIO ASSIMÉTRICO	V8	INTERNO	407,5	33,95833	15	15X35
五	V9	EXTERNO	407,5	40,75	15	15X40

APÊNDICE C – Pré-dimensionamento dos pilares do Edifício Simétrico.

Pilar	Área de influência	Situação do pilar	Coeficiente de majoração	fck (kN/cm²)	Área da seção de concreto (cm²)	Base adotada (cm)	Área mínima (cm²)	Altura mínima (cm)	Altura adotada (cm)
P1	3,151	CANTO	1,8	2,5	252,486	15	360	24,000	25
P2	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P3	3,151	CANTO	1,8	2,5	252,486	15	360	24,000	25
P4	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P5	11,560	INTERNO	1,3	2,5	669,071	15	669,071	44,605	45
P6	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P7	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P8	11,560	INTERNO	1,3	2,5	669,071	15	669,071	44,605	45
P9	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P10	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P11	11,560	INTERNO	1,3	2,5	669,071	15	669,071	44,605	45
P12	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P13	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P14	11,560	INTERNO	1,3	2,5	669,071	15	669,071	44,605	45
P15	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P16	3,151	CANTO	1,8	2,5	252,486	15	360	24,000	25
P17	6,035	EXTREMIDADE	1,5	2,5	403,032	15	403,032	26,869	30
P18	3,151	CANTO	1,8	2,5	252,486	15	360	24,000	25

APÊNDICE D – Pré-dimensionamento dos pilares do Edifício Assimétrico.

Pilar	Área de influência	Situação do pilar	Coeficiente de majoração	fck (kN/cm²)	Área da seção de concreto (cm²)	Base adotada (cm)	Área mínima (cm²)	Altura mínima (cm)	Altura adotada (cm)
P1	4,4626	CANTO	1,8	2,5	357,628	15	360,000	24,000	25
P2	7,4467	EXTREMIDADE	1,5	2,5	497,309	15	497,309	33,154	35
Р3	2,7727	CANTO	1,8	2,5	222,201	15	360,000	24,000	25
P4	8,6085	EXTREMIDADE	1,5	2,5	574,897	15	574,897	38,326	40
P5	14,3642	INTERNO	1,3	2,5	831,373	15	831,373	55,425	55
P6	5,3484	EXTREMIDADE	1,5	2,5	357,179	15	360,000	24,000	25
P7	7,3833	EXTREMIDADE	1,5	2,5	493,075	15	493,075	32,872	35
P8	12,3197	INTERNO	1,3	2,5	713,041	15	713,041	47,536	50
P9	4,5872	EXTREMIDADE	1,5	2,5	306,344	15	360,000	24,000	25
P10	5,7937	EXTREMIDADE	1,5	2,5	386,917	15	386,917	25,794	30
P11	9,6672	INTERNO	1,3	2,5	559,519	15	559,519	37,301	40
P12	3,5995	EXTREMIDADE	1,5	2,5	240,383	15	360,000	24,000	25
P13	6,5489	EXTREMIDADE	1,5	2,5	437,352	15	437,352	29,157	30
P14	10,9273	INTERNO	1,3	2,5	632,452	15	632,452	42,163	40
P15	4,0688	EXTREMIDADE	1,5	2,5	271,724	15	360,000	24,000	25
P16	3,4328	CANTO	1,8	2,5	275,101	15	360,000	24,000	25
P17	5,728	EXTREMIDADE	1,5	2,5	382,530	15	382,530	25,502	30
P18	2,1328	CANTO	1,8	2,5	170,920	15	360,000	24,000	25

APÊNDICE E – Determinação da ação do vento a 0º nos nós dos pilares e momento de tombamento para a Edificação Simétrica.

Pilar	Pavimento	Nível (m)	Área de influência (m²)	Ca	q (kN/m²)	Força no pavimento (kN)	Força no nó do pilar (kN)	Momento de tombamento (kN.m)	Momento de tombamento COMB 1 (kN.m)	Momento de tombamento COMB 2 (kN.m)
	Térreo	3	5,213	1,27	0,306	2,023	3,218	9,654	8,109	13,516
	PT1	6	5,213	1,27	0,361	2,389	2,512	15,070	12,658	21,097
Pilar 01	PT2	9	5,213	1,27	0,398	2,634	2,728	24,551	20,622	34,371
	PT3	12	5,213	1,27	0,426	2,822	2,900	34,795	29,228	48,713
	PT4	15	5,213	1,27	0,450	2,977	1,489	22,329	18,757	31,261
	Térreo	3	10,313	1,27	0,306	4,003	6,367	19,100	16,044	26,740
	PT1	6	10,313	1,27	0,361	4,727	4,969	29,814	25,044	41,740
Pilar 04	PT2	9	10,313	1,27	0,398	5,211	5,397	48,571	40,800	68,000
	PT3	12	10,313	1,27	0,426	5,583	5,737	68,839	57,825	96,375
	PT4	15	10,313	1,27	0,450	5,890	2,945	44,176	37,108	61,847
	Térreo	3	10,2	1,27	0,306	3,959	6,297	18,892	15,869	26,448
	PT1	6	10,2	1,27	0,361	4,676	4,915	29,489	24,771	41,284
Pilar 07	PT2	9	10,2	1,27	0,398	5,154	5,338	48,041	40,355	67,258
	PT3	12	10,2	1,27	0,426	5,522	5,674	68,088	57,194	95,324
	PT4	15	10,2	1,27	0,450	5,826	2,913	43,695	36,703	61,172
	Térreo	3	10,2	1,27	0,306	3,959	6,297	18,892	15,869	26,448
	PT1	6	10,2	1,27	0,361	4,676	4,915	29,489	24,771	41,284
Pilar 10	PT2	9	10,2	1,27	0,398	5,154	5,338	48,041	40,355	67,258
	PT3	12	10,2	1,27	0,426	5,522	5,674	68,088	57,194	95,324
	PT4	15	10,2	1,27	0,450	5,826	2,913	43,695	36,703	61,172

APÊNDICE E – Determinação da ação do vento a 0º nos nós dos pilares e momento de tombamento para a Edificação Simétrica (continuação).

Pilar	Pavimento	Nível (m)	Área de influência (m²)	Ca	q (kN/m²)	Força no pavimento (kN)	Força no nó do pilar (kN)	Momento de tombamento (kN.m)	Momento de tombamento COMB 1 (kN.m)	Momento de tombamento COMB 2 (kN.m)
	Térreo	3	10,313	1,27	0,306	4,003	6,367	19,100	16,044	26,740
	PT1	6	10,313	1,27	0,361	4,727	4,969	29,814	25,044	41,740
Pilar 13	PT2	9	10,313	1,27	0,398	5,211	5,397	48,571	40,800	68,000
	PT3	12	10,313	1,27	0,426	5,583	5,737	68,839	57,825	96,375
	PT4	15	10,313	1,27	0,450	5,890	2,945	44,176	37,108	61,847
	Térreo	3	5,213	1,27	0,306	2,023	3,218	9,654	8,109	13,516
	PT1	6	5,213	1,27	0,361	2,389	2,512	15,070	12,658	21,097
Pilar 16	PT2	9	5,213	1,27	0,398	2,634	2,728	24,551	20,622	34,371
	PT3	12	5,213	1,27	0,426	2,822	2,900	34,795	29,228	48,713
	PT4	15	5,213	1,27	0,450	2,977	1,489	22,329	18,757	31,261
			SC	1050,209	882,175	1470,292				

 $\mathbf{AP\hat{E}NDICE}\;\mathbf{F}-\mathbf{Determina}\\ \mathbf{\tilde{c}ao}\;\mathbf{da}\;\mathbf{a}\\ \mathbf{\tilde{c}ao}\;\mathbf{do}\;\mathbf{vento}\;\mathbf{a}\;\mathbf{90}^{o}\;\mathbf{nos}\;\mathbf{nos}\;\mathbf{dos}\;\mathbf{pilares}\;\mathbf{e}\;\mathbf{momento}\;\mathbf{de}\;\mathbf{tombamento}\;\mathbf{para}\;\mathbf{a}\;\mathbf{E}\\ \mathbf{difica}\\ \mathbf{\tilde{c}ao}\;\mathbf{Sim\acute{e}trica.}$

Pilar	Pavimento	Nível (m)	Área de influência (m²)	Ca	q (kN/m²)	Força no pavimento (kN)	Força no nó do pilar (kN)	Momento de tombamento (kN.m)	Momento de tombamento COMB 3 (kN.m)	Momento de tombamento COMB 4 (kN.m)
	Térreo	3	5,213	0,86	0,306	1,370	2,179	6,537	5,491	9,152
	PT1	6	5,213	0,86	0,361	1,618	1,701	10,205	8,572	14,286
Pilar 16	PT2	9	5,213	0,86	0,398	1,783	1,847	16,625	13,965	23,275
	PT3	12	5,213	0,86	0,426	1,911	1,964	23,562	19,792	32,987
	PT4	15	5,213	0,86	0,450	2,016	1,008	15,121	12,701	21,169
	Térreo	3	10,425	0,86	0,306	2,740	4,358	13,075	10,983	18,305
	PT1	6	10,425	0,86	0,361	3,236	3,402	20,409	17,144	28,573
Pilar 17	PT2	9	10,425	0,86	0,398	3,567	3,694	33,250	27,930	46,549
	PT3	12	10,425	0,86	0,426	3,822	3,927	47,124	39,584	65,974
	PT4	15	10,425	0,86	0,450	4,032	2,016	30,241	25,403	42,338
	Térreo	3	5,213	0,86	0,306	1,370	2,179	6,537	5,491	9,152
	PT1	6	5,213	0,86	0,361	1,618	1,701	10,205	8,572	14,286
Pilar 18	PT2	9	5,213	0,86	0,398	1,783	1,847	16,625	13,965	23,275
	PT3	12	5,213	0,86	0,426	1,911	1,964	23,562	19,792	32,987
	PT4	15	5,213	0,86	0,450	2,016	1,008	15,121	12,701	21,169
			SO		288,198	242,086	403,477			

APÊNDICE G – Determinação da ação do vento a 0º nos nós dos pilares e momento de tombamento para a Edificação Assimétrica.

Pilar	Pavimento	Nível (m)	Área de influência (m²)	Ca	q (kN/m²)	Força no pavimento (kN)	Força no nó do pilar (kN)	Momento de tombamento (kN.m)	Momento de tombamento COMB 1 (kN.m)	Momento de tombamento COMB 2 (kN.m)
	Térreo	3	6,225	1,27	0,306	2,416	3,843	11,529	9,685	16,141
	PT1	6	6,225	1,27	0,361	2,854	2,999	17,997	15,117	25,196
Pilar 01	PT2	9	6,225	1,27	0,398	3,145	3,258	29,319	24,628	41,047
	PT3	12	6,225	1,27	0,426	3,370	3,463	41,554	34,905	58,176
	PT4	15	6,225	1,27	0,450	3,556	1,778	26,667	22,400	37,333
	Térreo	3	12,338	1,27	0,306	4,789	7,617	22,850	19,194	31,991
	PT1	6	12,338	1,27	0,361	5,656	5,945	35,668	29,961	49,936
Pilar 04	PT2	9	12,338	1,27	0,398	6,234	6,457	58,109	48,812	81,353
	PT3	12	12,338	1,27	0,426	6,679	6,863	82,357	69,180	115,300
	PT4	15	12,338	1,27	0,450	7,047	3,523	52,851	44,395	73,992
	Térreo	3	10,088	1,27	0,306	3,916	6,228	18,683	15,694	26,156
	PT1	6	10,088	1,27	0,361	4,624	4,861	29,163	24,497	40,829
Pilar 07	PT2	9	10,088	1,27	0,398	5,097	5,279	47,512	39,910	66,516
	PT3	12	10,088	1,27	0,426	5,461	5,611	67,337	56,563	94,272
	PT4	15	10,088	1,27	0,450	5,762	2,881	43,213	36,299	60,498
	Térreo	3	8,625	1,27	0,306	3,348	5,325	15,974	13,419	22,364
	PT1	6	8,625	1,27	0,361	3,954	4,156	24,935	20,946	34,909
Pilar 10	PT2	9	8,625	1,27	0,398	4,358	4,514	40,623	34,124	56,873
	PT3	12	8,625	1,27	0,426	4,669	4,798	57,575	48,363	80,605
	PT4	15	8,625	1,27	0,450	4,926	2,463	36,948	31,036	51,727

APÊNDICE G — Determinação da ação do vento a 0º nos nós dos pilares e momento de tombamento para a Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível (m)	Área de influência (m²)	Ca	q (kN/m²)	Força no pavimento (kN)	Força no nó do pilar (kN)	Momento de tombamento (kN.m)	Momento de tombamento COMB 1 (kN.m)	Momento de tombamento COMB 2 (kN.m)
	Térreo	3	9,413	1,27	0,306	3,654	5,811	17,433	14,644	24,406
	PT1	6	9,413	1,27	0,361	4,315	4,535	27,212	22,858	38,097
Pilar 13	PT2	9	9,413	1,27	0,398	4,756	4,926	44,332	37,239	62,065
	PT3	12	9,413	1,27	0,426	5,096	5,236	62,832	52,779	87,964
	PT4	15	9,413	1,27	0,450	5,376	2,688	40,321	33,870	56,449
	Térreo	3	4,763	1,27	0,306	1,849	2,940	8,821	7,409	12,349
	PT1	6	4,763	1,27	0,361	2,183	2,295	13,769	11,566	19,276
Pilar 16	PT2	9	4,763	1,27	0,398	2,406	2,492	22,431	18,842	31,404
	PT3	12	4,763	1,27	0,426	2,578	2,649	31,791	26,705	44,508
	PT4	15	4,763	1,27	0,450	2,720	1,360	20,401	17,137	28,562
			SC)MA		1050,209	882,175	1470,292		

 $\mathbf{AP\hat{E}NDICE}\;\mathbf{H}-\mathbf{Determina}\\ \mathbf{\tilde{c}ao}\;\mathbf{da}\;\mathbf{a}\\ \mathbf{\tilde{c}ao}\;\mathbf{do}\;\mathbf{vento}\;\mathbf{a}\;\mathbf{90}^{o}\;\mathbf{nos}\;\mathbf{nos}\;\mathbf{dos}\;\mathbf{pilares}\;\mathbf{e}\;\mathbf{momento}\;\mathbf{de}\;\mathbf{tombamento}\;\mathbf{para}\;\mathbf{a}\;\mathbf{Edifica}\\ \mathbf{\tilde{c}ao}\;\mathbf{Assimétrica}.$

Pilar	Pavimento	Nível (m)	Área de influência (m²)	Ca	q (kN/m²)	Força no pavimento (kN)	Força no nó do pilar (kN)	Momento tombamento (kN.m)	Momento de tombamento COMB 3 (kN.m)	Momento de tombamento COMB 4 (kN.m)
	Térreo	3	6,225	0,86	0,306	1,636	2,602	7,807	6,558	10,930
	PT1	6	6,225	0,86	0,361	1,932	2,031	12,187	10,237	17,062
Pilar 16	PT2	9	6,225	0,86	0,398	2,130	2,206	19,854	16,677	27,796
	PT3	12	6,225	0,86	0,426	2,282	2,345	28,139	23,637	39,394
	PT4	15	6,225	0,86	0,450	2,408	1,204	18,058	15,168	25,281
	Térreo	3	10,425	0,86	0,306	2,740	4,358	13,075	10,983	18,305
	PT1	6	10,425	0,86	0,361	3,236	3,402	20,409	17,144	28,573
Pilar 17	PT2	9	10,425	0,86	0,398	3,567	3,694	33,250	27,930	46,549
	PT3	12	10,425	0,86	0,426	3,822	3,927	47,124	39,584	65,974
	PT4	15	10,425	0,86	0,450	4,032	2,016	30,241	25,403	42,338
	Térreo	3	4,2	0,86	0,306	1,104	1,756	5,268	4,425	7,375
	PT1	6	4,2	0,86	0,361	1,304	1,370	8,222	6,907	11,511
Pilar 18	PT2	9	4,2	0,86	0,398	1,437	1,488	13,396	11,252	18,754
	PT3	12	4,2	0,86	0,426	1,540	1,582	18,985	15,948	26,579
	PT4	15	4,2	0,86	0,450	1,624	0,812	12,183	10,234	17,057
				SOM		288,198	242,086	403,477		

APÊNDICE I – Cargas axiais nos pilares dos pórticos planos – Edificação Simétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	236,13	217,31	247,34	236,01
	PT1	3	228,72	209,9	239,93	228,59
PILAR 01	PT2	6	178,9	163,37	186,44	177,96
PILAR UI	PT3	9	127,09	118,47	131,26	125,42
	PT4	12	73,4	68,88	75,07	71,66
	COBERTURA	15	18,12	16,59	18,49	17,22
	Térreo	0	488,67	461,72	484,17	454,22
	PT1	3	479,77	452,82	475,27	445,32
PILAR 02	PT2	6	369,49	348,29	366,8	343,81
PILAR 02	PT3	9	260,39	245	258,99	242,66
	PT4	12	151,81	142,2	151,33	141,39
	COBERTURA	15	43,4	39,56	43,34	39,46
	Térreo	0	267,21	268,76	247,83	236,46
	PT1	3	259,79	261,35	240,42	229,05
DIL AD 02	PT2	6	199,59	205,48	186,9	178,34
PILAR 03	PT3	9	138,49	137,16	131,65	125,76
	PT4	12	78,17	76	75,45	71,97
	COBERTURA	15	19,27	19,08	18,68	17,37
	Térreo	0	477,9	440,04	495,68	469,65
	PT1	3	469,01	431,14	486,78	460,76
DIL AD 04	PT2	6	364,21	335,89	375,75	355,12
PILAR 04	PT3	9	258,63	239,39	264,89	249,81
	PT4	12	151,81	140,68	154,31	144,84
	COBERTURA	15	43,21	39,05	43,81	40,05
	Térreo	0	969,48	894,49	969,89	895,17
	PT1	3	956,14	881,14	956,54	881,82
PILAR 05	PT2	6	742,86	684,06	743,13	684,52
PILAR 03	PT3	9	532,42	489,66	532,54	489,85
	PT4	12	322,58	295,78	322,64	295,87
	COBERTURA	15	113,16	102,28	113,19	102,31
	Térreo	0	511,97	496,57	497,98	469,92
	PT1	3	503,07	487,67	487,08	461,02
PILAR 06	PT2	6	386,79	373,28	376,09	355,46
PILAK UO	PT3	9	271,12	259,99	265,19	250,09
_	PT4	12	157,15	149,37	154,61	145,14
	COBERTURA	15	44,69	41,4	43,99	40,21

APÊNDICE I — Cargas axiais nos pilares dos pórticos planos — Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	445,74	410,8	462,51	438,75
	PT1	3	436,84	401,9	453,61	429,85
PILAR 07	PT2	6	340,31	314,12	351,56	332,86
FILAR 07	PT3	9	242,12	224,4	248,35	234,77
	PT4	12	142,09	131,84	144,76	136,31
	COBERTURA	15	40,22	36,39	40,98	37,65
	Térreo	0	896,43	829,65	896,39	829,56
	PT1	3	883,09	816,29	883,03	816,2
DII AD 00	PT2	6	686,51	589,06	686,55	634,13
PILAR 08	PT3	9	491,26	453,11	491,31	453,19
	PT4	12	296,25	272,35	296,31	272,46
	COBERTURA	15	101,48	91,83	101,52	91,89
	Térreo	0	479,55	467,07	462,61	438,84
	PT1	3	470,65	458,17	453,71	429,94
DII AD OO	PT2	6	362,97	351,8	351,67	332,96
PILAR 09	PT3	9	254,64	245,19	248,45	234,86
	PT4	12	147,5	140,78	144,87	136,41
	COBERTURA	15	41,75	38,89	41,03	37,7
	Térreo	0	443,01	408,34	459,93	436,53
	PT1	3	434,11	399,44	451,03	427,63
DIL AD 10	PT2	6	338,12	312,05	349,45	330,95
PILAR 10	PT3	9	240,55	222,91	246,78	233,28
	PT4	12	141,14	130,91	143,8	135,36
	COBERTURA	15	39,89	36,05	40,63	37,28
	Térreo	0	896,19	829,42	896,21	829,45
	PT1	3	882,84	816,07	882,85	816,11
DII AD 11	PT2	6	686,3	633,89	686,32	633,92
PILAR 11	PT3	9	491,09	452,96	491,1	452,98
	PT4	12	300,29	275,93	296,14	272,27
	COBERTURA	15	101,44	91,79	101,43	91,8
	Térreo	0	476,53	464,29	459,82	436,43
	PT1	3	467,63	555,39	450,92	427,53
DIL AD 12	PT2	6	360,7	349,78	349,35	330,85
PILAR 12	PT3	9	253,02	243,77	246,69	233,2
	PT4	12	146,52	139,94	143,71	135,27
	COBERTURA	15	41,4	38,61	40,57	37,23

APÊNDICE I – Cargas axiais nos pilares dos pórticos planos – Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	478,32	440,48	494,21	466,98
	PT1	3	469,42	431,58	485,31	458,08
PILAR 13	PT2	6	364,25	335,72	375,15	353,89
FILAK 13	PT3	9	258,67	239,24	264,81	249,46
	PT4	12	151,82	140,47	154,57	145,06
	COBERTURA	15	43,21	38,92	44,04	40,3
	Térreo	0	969,5	894,51	969,07	893,79
	PT1	3	956,15	881,16	955,72	880,45
PILAR 14	PT2	6	742,94	608,8	742,73	683,85
PILAR 14	PT3	9	532,46	489,72	532,39	489,61
	PT4	12	322,64	295,87	322,65	295,88
	COBERTURA	15	113,2	102,34	113,22	102,37
	Térreo	0	511,55	496,11	493,91	466,7
	PT1	3	502,65	487,21	485,01	457,81
DIL AD 15	PT2	6	386,67	373,33	374,82	353,58
PILAR 15	PT3	9	271,04	260,08	264,53	249,2
	PT4	12	157,09	149,48	154,28	144,79
	COBERTURA	15	44,66	41,46	43,88	40,16
	Térreo	0	236,76	218	256	250,08
	PT1	3	229,34	210,59	248,59	242,66
DIL AD 16	PT2	6	179,04	165,23	191,98	186,81
PILAR 16	PT3	9	127,18	118,31	134,3	130,16
	PT4	12	73,45	68,64	76,44	73,63
	COBERTURA	15	18,12	16,44	18,86	17,68
	Térreo	0	488,67	461,71	493,14	469,18
	PT1	3	479,77	452,82	484,24	460,28
DIL AD 17	PT2	6	369,58	348,44	372,37	353,09
PILAR 17	PT3	9	260,44	245,09	261,92	247,55
	PT4	12	151,88	142,32	152,47	143,28
	COBERTURA	15	43,45	39,64	43,57	39,84
	Térreo	0	266,58	268,08	255,51	249,62
	PT1	3	259,17	260,66	248,1	242,21
DII AD 10	PT2	6	199,37	199,49	191,5	186,39
PILAR 18	PT3	9	140,35	137,24	133,88	129,8
	PT4	12	78,04	76,62	76,05	73,29
	COBERTURA	15	19,23	18,44	18,67	17,51

APÊNDICE J - Cargas axiais nos pilares do pórtico espacial — Edificação Simétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	237,99	217,06	254,84	245,14
	PT1	3	234,28	213,35	251,13	241,43
PILAR 01	PT2	6	184,53	168,98	195,75	187,68
FILAR 01	PT3	9	132,46	122,2	138,6	132,43
	PT4	12	78,19	72,46	80,77	76,75
	COBERTURA	15	22,13	20,06	22,77	21,13
	Térreo	0	453,23	427,14	460,11	438,46
	PT1	3	448,78	422,55	455,66	434,01
PILAR 02	PT2	6	345,09	324,62	349,36	331,75
FILAR 02	PT3	9	243,22	228,42	245,36	231,99
	PT4	12	142,35	133,15	143,09	134,38
	COBERTURA	15	42,15	38,46	42,26	38,63
	Térreo	0	265,81	263,38	254,9	245,19
	PT1	3	262,11	259,67	251,19	241,48
PILAR 03	PT2	6	203,22	200,05	195,84	187,75
FILAR 03	PT3	9	142,78	139,26	138,75	132,56
	PT4	12	82,6	79,66	80,93	76,88
	COBERTURA	15	23,21	21,83	22,79	21,15
	Térreo	0	468,67	427,66	486,04	456,6
	PT1	3	464,22	423,21	481,59	452,15
PILAR 04	PT2	6	361,25	330,55	372,75	349,73
FILAR 04	PT3	9	257,46	236,62	263,79	247,16
	PT4	12	152,29	140,2	154,96	144,66
	COBERTURA	15	45,32	40,81	46,04	42
	Térreo	0	850,49	787,29	849,58	785,78
	PT1	3	843,81	780,61	842,91	779,1
PILAR 05	PT2	6	654,08	604,88	653,6	604,09
I ILAK 03	PT3	9	467,82	432,19	467,65	431,9
	PT4	12	282,77	260,52	282,78	260,52
	COBERTURA	15	98,39	89,42	98,44	89,5
	Térreo	0	504,73	488,26	485,45	456,12
	PT1	3	500,28	483,81	481	451,67
PILAR 06	PT2	6	384,74	370,22	372,14	349,22
1 ILAK 00	PT3	9	269,96	257,96	263,17	246,65
	PT4	12	157,09	148,74	154,33	144,14
	COBERTURA	15	46,72	43,13	46,05	42,01

APÊNDICE J - Cargas axiais nos pilares do pórtico espacial — Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	438,37	399,45	456,91	430,35
	PT1	3	433,92	395	452,46	425,9
PILAR 07	PT2	6	339,8	310,58	351,94	330,83
FILAR 07	PT3	9	243,47	223,61	250,05	234,57
	PT4	12	144,77	133,24	147,48	137,76
	COBERTURA	15	43,8	39,47	44,48	40,6
	Térreo	0	806,62	747,13	806,69	747,25
	PT1	3	799,95	740,46	800,02	740,57
PILAR 08	PT2	6	621,57	575,05	621,56	575,03
FILAK 06	PT3	9	444,7	410,98	444,63	410,86
	PT4	12	268,51	247,43	268,43	247,3
	COBERTURA	15	92,88	84,35	92,84	84,28
	Térreo	0	474,69	460,38	456,4	429,9
	PT1	3	470,24	455,93	451,95	425,45
PILAR 09	PT2	6	363,55	350,55	351,46	330,4
FILAR 09	PT3	9	256,07	245,11	249,43	234,04
	PT4	12	149,68	141,92	146,88	137,25
	COBERTURA	15	45,2	41,84	44,43	40,56
	Térreo	0	438,76	399,81	457,04	430,27
	PT1	3	434,31	395,36	452,59	425,82
PILAR 10	PT2	6	340,2	310,95	352,29	331,11
FILAK 10	PT3	9	243,28	223,46	249,94	234,55
	PT4	12	144,63	133,13	147,46	137,85
	COBERTURA	15	43,74	39,42	44,5	40,69
	Térreo	0	806,95	747,53	806,78	747,24
	PT1	3	800,27	740,85	800,1	740,57
PILAR 11	PT2	6	621,64	575,24	621,54	575,08
FILAR II	PT3	9	445,99	412,04	446,07	412,17
	PT4	12	269,43	248,2	269,5	248,32
	COBERTURA	15	93,1	84,53	93,15	84,61
	Térreo	0	475,79	461,43	457,25	430,53
	PT1	3	471,34	456,98	452,8	426,08
DII AD 12	PT2	6	364,39	351,39	352,23	331,14
PILAR 12	PT3	9	256,87	245,8	250,27	234,81
	PT4	12	150,05	142,25	147,32	137,69
	COBERTURA	15	45,55	42,14	44,87	41

APÊNDICE J - Cargas axiais nos pilares do pórtico espacial — Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	467,77	427,05	486,91	458,95
	PT1	3	463,32	422,6	482,46	454,5
PILAR 13	PT2	6	360,27	329,87	372,73	350,64
FILAK 13	PT3	9	257,97	237,04	264,77	248,38
	PT4	12	152,63	140,49	155,42	145,12
	COBERTURA	15	45,45	40,91	46,14	42,05
	Térreo	0	873,3	806,4	874,99	809,22
	PT1	3	866,62	799,73	868,32	802,55
DIL AD 14	PT2	6	677,24	624,27	678,5	626,36
PILAR 14	PT3	9	466,32	430,98	466,41	431,13
	PT4	12	281,73	259,67	281,65	259,54
	COBERTURA	15	98,2	89,28	98,13	89,15
	Térreo	0	527,39	508	509,72	478,55
	PT1	3	522,94	503,55	505,27	474,11
DIL AD 15	PT2	6	407,56	390,11	395,74	370,4
PILAR 15	PT3	9	270,31	258,22	264,05	247,78
	PT4	12	157,75	149,27	155,11	144,88
	COBERTURA	15	46,46	42,9	45,76	41,73
	Térreo	0	238,85	218,04	249,51	235,81
	PT1	3	235,14	214,33	245,8	232,1
DIL AD 16	PT2	6	185,23	169,81	192,39	181,73
PILAR 16	PT3	9	133,05	122,71	137,09	129,44
	PT4	12	78,54	72,74	80,25	75,56
	COBERTURA	15	22,26	20,16	22,68	20,86
	Térreo	0	473,89	444,49	467,28	433,48
	PT1	3	469,44	440,04	462,83	429,03
DIL AD 17	PT2	6	365,94	342,29	361,95	335,63
PILAR 17	PT3	9	242,94	228,2	240,76	224,56
	PT4	12	142,33	133,14	141,55	131,86
	COBERTURA	15	42,05	38,39	41,94	38,2
	Térreo	0	288,79	283,56	271,69	255,05
	PT1	3	285,08	279,85	267,98	251,34
DIL AD 10	PT2	6	226,02	220,09	214,53	200,95
PILAR 18	PT3	9	143,08	139,5	136,96	129,31
	PT4	12	82,67	79,73	80,11	75,46
	COBERTURA	15	23,31	21,91	22,68	20,86

APÊNDICE K – Variação das cargas axiais entre os pórticos plano e espacial - Edificação Simétrica.

Pilar	Pavimento	Variação 01	Variação 02	Variação 03	Variação 04
	Térreo	-1,86	0,25	-7,5	-9,13
	PT1	-5,56	-3,45	-11,2	-12,84
PILAR 01	PT2	-5,63	-5,61	-9,31	-9,72
I ILAK UI	PT3	-5,37	-3,73	-7,34	-7,01
	PT4	-4,79	-3,58	-5,7	-5,09
	COBERTURA	-4,01	-3,47	-4,28	-3,91
	Térreo	35,44	34,58	24,06	15,76
	PT1	30,99	30,27	19,61	11,31
PILAR 02	PT2	24,4	23,67	17,44	12,06
FILAR 02	PT3	17,17	16,58	13,63	10,67
	PT4	9,46	9,05	8,24	7,01
	COBERTURA	1,25	1,1	1,08	0,83
	Térreo	1,4	5,38	-7,07	-8,73
	PT1	-2,32	1,68	-10,77	-12,43
PILAR 03	PT2	-3,63	5,43	-8,94	-9,41
FILAR 03	PT3	-4,29	-2,1	-7,1	-6,8
	PT4	-4,43	-3,66	-5,48	-4,91
	COBERTURA	-3,94	-2,75	-4,11	-3,78
	Térreo	9,23	12,38	9,64	13,05
	PT1	4,79	7,93	5,19	8,61
PILAR 04	PT2	2,96	5,34	3	5,39
FILAR 04	PT3	1,17	2,77	1,1	2,65
	PT4	-0,48	0,48	-0,65	0,18
	COBERTURA	-2,11	-1,76	-2,23	-1,95
	Térreo	118,99	107,2	120,31	109,39
	PT1	112,33	100,53	113,63	102,72
PILAR 05	PT2	88,78	79,18	89,53	80,43
FILAR 03	PT3	64,6	57,47	64,89	57,95
	PT4	39,81	35,26	39,86	35,35
	COBERTURA	14,77	12,86	14,75	12,81
	Térreo	7,24	8,31	12,53	13,8
	PT1	2,79	3,86	6,08	9,35
PILAR 06	PT2	2,05	3,06	3,95	6,24
FILAR 00	PT3	1,16	2,03	2,02	3,44
	PT4	0,06	0,63	0,28	1
	COBERTURA	-2,03	-1,73	-2,06	-1,8

APÊNDICE K – Variação das cargas axiais entre os pórticos plano e espacial - Edificação Simétrica (continuação).

Pilar	Pavimento	Variação 01	Variação 02	Variação 03	Variação 04
	Térreo	7,37	11,35	5,6	8,4
	PT1	2,92	6,9	1,15	3,95
PILAR 07	PT2	0,51	3,54	-0,38	2,03
FILAR 07	PT3	-1,35	0,79	-1,7	0,2
	PT4	-2,68	-1,4	-2,72	-1,45
	COBERTURA	-3,58	-3,08	-3,5	-2,95
	Térreo	89,81	82,52	89,7	82,31
	PT1	83,14	75,83	83,01	75,63
PILAR 08	PT2	64,94	14,01	64,99	59,1
I ILAK 00	PT3	46,56	42,13	46,68	42,33
	PT4	27,74	24,92	27,88	25,16
	COBERTURA	8,6	7,48	8,68	7,61
	Térreo	4,86	6,69	6,21	8,94
	PT1	0,41	2,24	1,76	4,49
PILAR 09	PT2	-0,58	1,25	0,21	2,56
FILAR 09	PT3	-1,43	0,08	-0,98	0,82
	PT4	-2,18	-1,14	-2,01	-0,84
	COBERTURA	-3,45	-2,95	-3,4	-2,86
	Térreo	4,25	8,53	2,89	6,26
	PT1	-0,2	4,08	-1,56	1,81
PILAR 10	PT2	-2,08	1,1	-2,84	-0,16
FILAK 10	PT3	-2,73	-0,55	-3,16	-1,27
	PT4	-3,49	-2,22	-3,66	-2,49
	COBERTURA	-3,85	-3,37	-3,87	-3,41
	Térreo	89,24	81,89	89,43	82,21
	PT1	82,57	75,22	82,75	75,54
PILAR 11	PT2	64,66	58,65	64,78	58,84
FILAK II	PT3	45,1	40,92	45,03	40,81
	PT4	30,86	27,73	26,64	23,95
	COBERTURA	8,34	7,26	8,28	7,19
	Térreo	0,74	2,86	2,57	5,9
	PT1	-3,71	98,41	-1,88	1,45
PILAR 12	PT2	-3,69	-1,61	-2,88	-0,29
1 ILAN 12	PT3	-3,85	-2,03	-3,58	-1,61
	PT4	-3,53	-2,31	-3,61	-2,42
	COBERTURA	-4,15	-3,53	-4,3	-3,77

APÊNDICE K – Variação das cargas axiais entre os pórticos plano e espacial - Edificação Simétrica (continuação).

Pilar	Pavimento	Variação 01	Variação 02	Variação 03	Variação 04
	Térreo	10,55	13,43	7,3	8,03
	PT1	6,1	8,98	2,85	3,58
PILAR 13	PT2	3,98	5,85	2,42	3,25
FILAK 13	PT3	0,7	2,2	0,04	1,08
	PT4	-0,81	-0,02	-0,85	-0,06
	COBERTURA	-2,24	-1,99	-2,1	-1,75
	Térreo	96,2	88,11	94,08	84,57
	PT1	89,53	81,43	87,4	77,9
PILAR 14	PT2	65,7	-15,47	64,23	57,49
I ILAK 14	PT3	66,14	58,74	65,98	58,48
	PT4	40,91	36,2	41	36,34
	COBERTURA	15	13,06	15,09	13,22
	Térreo	-15,84	-11,89	-15,81	-11,85
	PT1	-20,29	-16,34	-20,26	-16,3
PILAR 15	PT2	-20,89	-16,78	-20,92	-16,82
I ILAK 13	PT3	0,73	1,86	0,48	1,42
	PT4	-0,66	0,21	-0,83	-0,09
	COBERTURA	-1,8	-1,44	-1,88	-1,57
	Térreo	-2,09	-0,04	6,49	14,27
	PT1	-5,8	-3,74	2,79	10,56
PILAR 16	PT2	-6,19	-4,58	-0,41	5,08
TILTIK 10	PT3	-5,87	-4,4	-2,79	0,72
	PT4	-5,09	-4,1	-3,81	-1,93
	COBERTURA	-4,14	-3,72	-3,82	-3,18
	Térreo	14,78	17,22	25,86	35,7
	PT1	10,33	12,78	21,41	31,25
PILAR 17	PT2	3,64	6,15	10,42	17,46
T ILZ IIC 17	PT3	17,5	16,89	21,16	22,99
	PT4	9,55	9,18	10,92	11,42
	COBERTURA	1,4	1,25	1,63	1,64
	Térreo	-22,21	-15,48	-16,18	-5,43
	PT1	-25,91	-19,19	-19,88	-9,13
PILAR 18	PT2	-26,65	-20,6	-23,03	-14,56
	PT3	-2,73	-2,26	-3,08	0,49
	PT4	-4,63	-3,11	-4,06	-2,17
	COBERTURA	-4,08	-3,47	-4,01	-3,35

APÊNDICE L — Cargas axiais nos pilares dos pórticos planos — Edificação Assimétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	291,78	271,13	301,15	286,73
	PT1	3	284,43	263,76	293,8	279,37
PILAR 01	PT2	6	221,72	206,46	228,17	217,19
FILAR 01	PT3	9	157,35	147,21	161,05	153,35
	PT4	12	91,35	85,67	92,97	88,38
	COBERTURA	15	24,13	22,08	24,58	22,83
	Térreo	0	551,01	513,53	554,54	519,41
	PT1	3	540,71	503,24	544,24	509,13
PILAR 02	PT2	6	416,16	387,81	418,22	391,23
PILAR 02	PT3	9	294,81	275,24	295,48	276,35
	PT4	12	173,79	162,19	173,66	161,96
	COBERTURA	15	51,88	47,46	51,63	47,05
	Térreo	0	263,83	270,31	239,59	229,93
	PT1	3	256,48	262,97	232,25	222,57
PILAR 03	PT2	6	196,88	199,84	181,43	174,09
PILAR 03	PT3	9	136,13	136,31	128,2	123,09
	PT4	12	76,58	75,43	73,76	70,72
	COBERTURA	15	19,14	18,28	18,69	17,54
	Térreo	0	653,68	602,89	671,94	633,33
	PT1	3	641,92	591,13	660,18	621,57
PILAR 04	PT2	6	499,17	460,77	511,08	480,61
FILAR 04	PT3	9	355,69	329,09	362,24	340
	PT4	12	210,78	195,02	213,53	199,6
	COBERTURA	15	63,94	57,87	64,69	59,14
	Térreo	0	1116,98	1026,36	1123,34	1036,94
	PT1	3	1100,82	1010,18	1107,17	1020,78
DIL AD 05	PT2	6	857,08	786,68	860,89	793,02
PILAR 05	PT3	9	616,56	566,01	618,04	568,48
	PT4	12	375,05	343,81	375,29	344,21
	COBERTURA	15	133,27	120,76	133,1	120,47
	Térreo	0	489,76	484,28	467,67	447,48
	PT1	3	482,41	476,93	460,33	440,12
DII AD OC	PT2	6	368,55	362,09	354,11	338,03
PILAR 06	PT3	9	255,77	249,06	248,13	236,33
	PT4	12	145,79	140,38	142,78	135,35
	COBERTURA	15	38,26	35,79	37,55	34,61

APÊNDICE L – Cargas axiais nos pilares dos pórticos planos – Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	510,04	470,81	524,69	495,23
	PT1	3	499,74	460,51	514,4	484,94
DILAD 07	PT2	6	389,22	359,58	399,23	376,27
PILAR 07	PT3	9	277,24	256,87	282,97	266,44
	PT4	12	163,51	151,53	166,17	155,97
	COBERTURA	15	48,11	43,56	48,97	44,99
	Térreo	0	876,21	809,15	880,17	815,73
	PT1	3	861,51	794,45	865,47	801,03
DII AD 00	PT2	6	669,83	617,94	672,35	622,15
PILAR 08	PT3	9	479,51	442,54	480,61	444,35
	PT4	12	288,98	266,29	289,2	266,67
	COBERTURA	15	97,87	88,88	97,8	88,77
	Térreo	0	399,75	398,86	375,9	359,12
	PT1	3	392,39	391,51	368,55	351,77
DII AD OO	PT2	6	301,27	298,52	285,82	272,79
PILAR 09	PT3	9	209,42	205,47	201,39	192,08
	PT4	12	119,36	115,72	116,28	110,59
	COBERTURA	15	31,36	29,61	30,74	28,56
	Térreo	0	447,91	414,12	462,37	438,24
	PT1	3	439,09	405,3	453,55	429,42
PILAR 10	PT2	6	343,15	317,43	352,75	333,42
FILAK 10	PT3	9	245,11	227,34	250,36	236,08
	PT4	12	145,17	134,64	147,39	143,07
	COBERTURA	15	43,63	39,61	44,2	40,55
	Térreo	0	757,16	732,22	765,46	713,19
	PT1	3	745,4	687,58	753,7	701,43
PILAR 11	PT2	6	579,41	534,76	584,45	543,17
FILAK II	PT3	9	414,78	383,03	417,04	386,8
	PT4	12	249,72	230,3	250,26	231,19
	COBERTURA	15	84,2	76,48	84,09	76,3
	Térreo	0	364,25	362,82	344,95	330,65
	PT1	3	356,91	355,48	337,6	323,31
PILAR 12	PT2	6	276,25	273,29	263,24	251,62
FILAN 12	PT3	9	193,39	189,47	186,29	177,65
	PT4	12	111,28	107,78	108,28	102,78
	COBERTURA	15	30,66	28,99	29,88	27,68

APÊNDICE L – Cargas axiais nos pilares dos pórticos planos – Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	512,87	474	525,28	494,68
	PT1	3	504,05	465,18	516,46	485,86
PILAR 13	PT2	6	390,75	361,12	399,45	375,63
FILAK 13	PT3	9	277,46	256,89	282,57	265,42
	PT4	12	163,46	151,22	165,92	155,31
	COBERTURA	15	48,22	43,54	49,02	44,88
	Térreo	0	889,95	818,53	895,64	828
	PT1	3	878,19	806,77	883,88	816,24
PILAR 14	PT2	6	680,36	625,33	684,06	631,5
PILAR 14	PT3	9	486,84	447,67	488,65	450,66
	PT4	12	294,4	270,36	294,96	271,3
	COBERTURA	15	102,07	92,5	102,1	92,56
	Térreo	0	406,52	402,15	385,43	367
	PT1	3	399,16	394,79	378,08	359,65
PILAR 15	PT2	6	305,45	300,31	291,68	277,36
PILAK 13	PT3	9	211,95	206,52	204,72	194,47
	PT4	12	120,44	116,05	117,65	111,39
	COBERTURA	15	30,92	28,93	30,35	27,98
	Térreo	0	262,15	271,82	277,85	271,01
	PT1	3	254,79	237,47	270,51	263,65
PILAR 16	PT2	6	198,82	185,8	209,39	203,42
FILAK 10	PT3	9	141,13	132,42	147,06	142,29
	PT4	12	81,88	76,91	84,47	81,22
	COBERTURA	15	21,36	19,53	22,04	20,66
	Térreo	0	457,8	429,4	469,37	448,7
	PT1	3	448,98	420,58	460,55	439,88
PILAR 17	PT2	6	345,9	324,37	353,05	336,28
PILAR 17	PT3	9	244,2	229,34	247,61	235,02
	PT4	12	142,58	133,78	143,61	135,48
	COBERTURA	15	40,26	36,91	40,28	36,94
	Térreo	0	232,38	238,13	218,63	215,22
	PT1	3	225,02	230,79	211,27	207,88
PILAR 18	PT2	6	173,83	176,86	164,47	161,24
FILAK 18	PT3	9	120,63	121,25	115,57	112,83
	PT4	12	67,99	67,41	65,95	64
	COBERTURA	15	17,03	16,48	16,58	15,73

APÊNDICE M - Cargas axiais nos pilares do pórtico espacial — Edificação Assimétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	298,97	274,71	313,61	299,12
	PT1	3	295,29	271,04	309,94	295,45
PILAR 01	PT2	6	230,96	212,53	240,94	229,17
FILAR 01	PT3	9	165,07	152,5	170,74	161,94
	PT4	12	97,57	90,25	100,1	94,47
	COBERTURA	15	28,7	25,95	29,41	27,13
	Térreo	0	514,68	478,56	527,87	500,55
	PT1	3	509,53	473,42	522,73	495,41
PILAR 02	PT2	6	393,35	366,06	401,39	379,46
PILAR 02	PT3	9	279,21	260,33	282,9	266,49
	PT4	12	165,4	154,19	166,38	155,83
	COBERTURA	15	51,31	47,04	51,25	46,93
	Térreo	0	264,04	266,44	247,24	238,44
	PT1	3	260,36	262,77	243,56	234,77
PILAR 03	PT2	6	202,64	202,61	191,54	184,1
PILAR 03	PT3	9	142,26	140,37	136,49	130,74
	PT4	12	82,21	79,88	80,04	76,26
	COBERTURA	15	23,32	22,04	22,92	21,37
	Térreo	0	666	608,31	684,64	639,38
	PT1	3	660,12	602,43	678,76	633,5
PILAR 04	PT2	6	514,3	470,48	526,85	491,4
FILAR 04	PT3	9	367,89	337,47	375,03	349,37
	PT4	12	220,09	201,99	223,31	207,36
	COBERTURA	15	70,37	63,4	71,37	65,07
	Térreo	0	1030,54	949,36	1033,44	954,2
	PT1	3	1022,45	941,28	1025,36	946,12
PILAR 05	PT2	6	796,35	733,67	798,03	736,47
FILAR 03	PT3	9	572,93	528,11	573,43	528,96
	PT4	12	349,43	321,82	349,31	321,62
	COBERTURA	15	125,95	114,94	125,72	114,56
	Térreo	0	503,1	492,45	479,21	452,64
	PT1	3	499,42	488,78	475,53	448,96
PILAR 06	PT2	6	381,22	370,65	365,84	345,02
FILAN 00	PT3	9	265	255,26	257,03	241,98
	PT4	12	152,2	144,86	149,21	139,88
	COBERTURA	15	42,28	39,04	41,7	38,06

APÊNDICE M - Cargas axiais nos pilares do pórtico espacial — Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	508,43	464,52	526,87	495,25
	PT1	3	503,29	459,38	521,72	490,1
PILAR 07	PT2	6	393,47	360,24	405,56	380,39
FILAR 07	PT3	9	281,82	258,89	288,47	269,97
	PT4	12	168,26	154,72	171,08	159,42
	COBERTURA	15	52,63	47,47	53,39	48,73
	Térreo	0	827,27	764,03	835,17	777,19
	PT1	3	819,92	756,68	827,82	769,84
PILAR 08	PT2	6	639,08	590,33	643,61	597,87
FILAR 00	PT3	9	459,15	424,43	460,89	427,33
	PT4	12	278,49	257,2	278,62	257,42
	COBERTURA	15	97,4	88,93	97,07	88,4
	Térreo	0	401,67	396,89	380,43	361,5
	PT1	3	397,99	393,22	376,76	357,82
DII AD OO	PT2	6	305,94	299,85	292,18	276,92
PILAR 09	PT3	9	213,62	207,15	206,39	195,1
	PT4	12	123,2	117,91	120,39	113,24
	COBERTURA	15	34,78	32,34	34,16	31,31
	Térreo	0	431,98	395,99	445,75	418,93
	PT1	3	427,57	391,58	441,34	414,52
PILAR 10	PT2	6	326,02	308,56	345,39	324,16
PILAR IU	PT3	9	241,55	222,47	246,93	231,45
	PT4	12	144,66	133,32	147,14	137,46
	COBERTURA	15	45,74	41,35	46,5	42,63
	Térreo	0	691,13	639,09	694,54	644,77
	PT1	3	685,25	633,21	688,66	638,89
PILAR 11	PT2	6	532,81	492,86	534,95	496,42
FILAR II	PT3	9	381,69	353,37	382,64	354,97
	PT4	12	230,22	212,94	230,47	213,34
	COBERTURA	15	78,45	71,57	78,45	71,56
	Térreo	0	356,02	352,54	335,35	318,09
	PT1	3	352,34	348,86	331,68	314,42
PILAR 12	PT2	6	273,97	269,01	260,74	246,95
FILAK 12	PT3	9	193,12	187,6	186,28	176,2
	PT4	12	112,64	108,03	110,08	103,78
	COBERTURA	15	33,29	31,1	32,82	30,32

APÊNDICE M - Cargas axiais nos pilares do pórtico espacial — Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	502,89	461,95	517,9	486,97
	PT1	3	498,48	457,54	513,49	482,56
PILAR 13	PT2	6	386,5	355,58	396,28	371,88
I ILAK 13	PT3	9	274,75	253,39	280,08	262,27
	PT4	12	162,61	149,98	164,83	153,68
	COBERTURA	15	49,52	44,77	50,07	45,68
	Térreo	0	797,42	735,93	804,58	747,86
	PT1	3	791,54	730,05	798,7	741,98
PILAR 14	PT2	6	610,73	564	614,71	570,63
FILAN 14	PT3	9	435,45	402,52	436,92	404,98
	PT4	12	262,23	242,23	262,27	242,3
	COBERTURA	15	90,11	82,26	89,79	81,74
	Térreo	0	401,85	394,89	382,98	363,43
	PT1	3	398,18	391,21	379,31	359,76
PILAR 15	PT2	6	304,29	296,78	292,16	276,57
FILAR 13	PT3	9	211,42	204,22	205,09	193,67
	PT4	12	120,93	115,37	118,52	111,36
	COBERTURA	15	32,51	30,04	32,03	29,24
	Térreo	0	267,31	246,9	275,08	259,85
	PT1	3	263,64	243,23	271,4	256,17
PILAR 16	PT2	6	207,64	192,16	213,01	201,11
FILAN 10	PT3	9	149,06	138,46	152,17	143,63
	PT4	12	88,4	82,21	89,83	84,59
	COBERTURA	15	26,14	23,79	26,56	24,49
	Térreo	0	436,09	407,78	434,84	405,69
	PT1	3	431,68	403,37	430,43	401,28
PILAR 17	PT2	6	332,66	311,36	331,71	309,77
IILAK 17	PT3	9	235,37	220,65	234,64	219,42
	PT4	12	138,35	129,6	137,87	128,8
	COBERTURA	15	40,99	37,62	40,79	37,28
	Térreo	0	228,27	230,85	208,17	197,35
	PT1	3	224,6	227,18	204,49	193,68
PILAR 18	PT2	6	175,28	175,42	162,34	153,87
IILAN 10	PT3	9	123,39	121,88	116,63	110,6
	PT4	12	71,44	69,51	68,85	65,2
	COBERTURA	15	20,36	19,28	19,86	18,45

APÊNDICE N – Variação das cargas axiais entre os pórticos plano e espacial - Edificação Assimétrica.

Pilar	Pavimento	Variação 01	Variação 02	Variação 03	Variação 04
	Térreo	-7,19	-3,58	-12,46	-12,39
	PT1	-10,86	-7,28	-16,14	-16,08
PILAR 01	PT2	-9,24	-6,07	-12,77	-11,98
FILAK 01	PT3	-7,72	-5,29	-9,69	-8,59
	PT4	-6,22	-4,58	-7,13	-6,09
	COBERTURA	-4,57	-3,87	-4,83	-4,3
	Térreo	36,33	34,97	26,67	18,86
	PT1	31,18	29,82	21,51	13,72
PILAR 02	PT2	22,81	21,75	16,83	11,77
I ILAK 02	PT3	15,6	14,91	12,58	9,86
	PT4	8,39	8	7,28	6,13
	COBERTURA	0,57	0,42	0,38	0,12
	Térreo	-0,21	3,87	-7,65	-8,51
	PT1	-3,88	0,2	-11,31	-12,2
PILAR 03	PT2	-5,76	-2,77	-10,11	-10,01
I ILAK 03	PT3	-6,13	-4,06	-8,29	-7,65
	PT4	-5,63	-4,45	-6,28	-5,54
	COBERTURA	-4,18	-3,76	-4,23	-3,83
	Térreo	-12,32	-5,42	-12,7	-6,05
	PT1	-18,2	-11,3	-18,58	-11,93
PILAR 04	PT2	-15,13	-9,71	-15,77	-10,79
I IL/ IIC O+	PT3	-12,2	-8,38	-12,79	-9,37
	PT4	-9,31	-6,97	-9,78	-7,76
	COBERTURA	-6,43	-5,53	-6,68	-5,93
	Térreo	86,44	77	89,9	82,74
	PT1	78,37	68,9	81,81	74,66
PILAR 05	PT2	60,73	53,01	62,86	56,55
I ILI IK 03	PT3	43,63	37,9	44,61	39,52
	PT4	25,62	21,99	25,98	22,59
	COBERTURA	7,32	5,82	7,38	5,91
	Térreo	-13,34	-8,17	-11,54	-5,16
	PT1	-17,01	-11,85	-15,2	-8,84
PILAR 06	PT2	-12,67	-8,56	-11,73	-6,99
	PT3	-9,23	-6,2	-8,9	-5,65
	PT4	-6,41	-4,48	-6,43	-4,53
	COBERTURA	-4,02	-3,25	-4,15	-3,45

APÊNDICE N – Variação das cargas axiais entre os pórticos plano e espacial - Edificação Assimétrica (continuação).

Pilar	Pavimento	Variação 01	Variação 02	Variação 03	Variação 04
	Térreo	1,61	6,29	-2,18	-0,02
	PT1	-3,55	1,13	-7,32	-5,16
PILAR 07	PT2	-4,25	-0,66	-6,33	-4,12
PILAR 07	PT3	-4,58	-2,02	-5,5	-3,53
	PT4	-4,75	-3,19	-4,91	-3,45
	COBERTURA	-4,52	-3,91	-4,42	-3,74
	Térreo	48,94	45,12	45	38,54
	PT1	41,59	37,77	37,65	31,19
DII AD OO	PT2	30,75	27,61	28,74	24,28
PILAR 08	PT3	20,36	18,11	19,72	17,02
	PT4	10,49	9,09	10,58	9,25
	COBERTURA	0,47	-0,05	0,73	0,37
	Térreo	-1,92	1,97	-4,53	-2,38
	PT1	-5,6	-1,71	-8,21	-6,05
DII AD OO	PT2	-4,67	-1,33	-6,36	-4,13
PILAR 09	PT3	-4,2	-1,68	-5	-3,02
	PT4	-3,84	-2,19	-4,11	-2,65
	COBERTURA	-3,42	-2,73	-3,42	-2,75
	Térreo	15,93	18,13	16,62	19,31
	PT1	11,52	13,72	12,21	14,9
PILAR 10	PT2	17,13	8,87	7,36	9,26
PILAK 10	PT3	3,56	4,87	3,43	4,63
	PT4	0,51	1,32	0,25	5,61
	COBERTURA	-2,11	-1,74	-2,3	-2,08
	Térreo	66,03	93,13	70,92	68,42
	PT1	60,15	54,37	65,04	62,54
DII AD 11	PT2	46,6	41,9	49,5	46,75
PILAR 11	PT3	33,09	29,66	34,4	31,83
	PT4	19,5	17,36	19,79	17,85
	COBERTURA	5,75	4,91	5,64	4,74
	Térreo	8,23	10,28	9,6	12,56
	PT1	4,57	6,62	5,92	8,89
PILAR 12	PT2	2,28	4,28	2,5	4,67
rilak 12	PT3	0,27	1,87	0,01	1,45
	PT4	-1,36	-0,25	-1,8	-1
	COBERTURA	-2,63	-2,11	-2,94	-2,64

APÊNDICE N – Variação das cargas axiais entre os pórticos plano e espacial - Edificação Assimétrica (continuação).

Pilar	Pavimento	Variação 01	Variação 02	Variação 03	Variação 04
	Térreo	9,98	12,05	7,38	7,71
	PT1	5,57	7,64	2,97	3,3
PILAR 13	PT2	4,25	5,54	3,17	3,75
IILAK 13	PT3	2,71	3,5	2,49	3,15
	PT4	0,85	1,24	1,09	1,63
	COBERTURA	-1,3	-1,23	-1,05	-0,8
	Térreo	92,53	82,6	91,06	80,14
	PT1	86,65	76,72	85,18	74,26
PILAR 14	PT2	69,63	61,33	69,35	60,87
FILAK 14	PT3	51,39	45,15	51,73	45,68
	PT4	32,17	28,13	32,69	29
	COBERTURA	11,96	10,24	12,31	10,82
	Térreo	4,67	7,26	2,45	3,57
	PT1	0,98	3,58	-1,23	-0,11
DIL AD 15	PT2	1,16	3,53	-0,48	0,79
PILAR 15	PT3	0,53	2,3	-0,37	0,8
	PT4	-0,49	0,68	-0,87	0,03
	COBERTURA	-1,59	-1,11	-1,68	-1,26
	Térreo	-5,16	24,92	2,77	11,16
	PT1	-8,85	-5,76	-0,89	7,48
DIL AD 16	PT2	-8,82	-6,36	-3,62	2,31
PILAR 16	PT3	-7,93	-6,04	-5,11	-1,34
	PT4	-6,52	-5,3	-5,36	-3,37
	COBERTURA	-4,78	-4,26	-4,52	-3,83
	Térreo	21,71	21,62	34,53	43,01
	PT1	17,3	17,21	30,12	38,6
DILAD 17	PT2	13,24	13,01	21,34	26,51
PILAR 17	PT3	8,83	8,69	12,97	15,6
	PT4	4,23	4,18	5,74	6,68
	COBERTURA	-0,73	-0,71	-0,51	-0,34
	Térreo	4,11	7,28	10,46	17,87
	PT1	0,42	3,61	6,78	14,2
DIL AD 10	PT2	-1,45	1,44	2,13	7,37
PILAR 18	PT3	-2,76	-0,63	-1,06	2,23
	PT4	-3,45	-2,1	-2,9	-1,2
	COBERTURA	-3,33	-2,8	-3,28	-2,72

APÊNDICE O – Deslocamentos horizontais provenientes da ação do vento nos pórticos planos - Edificação Simétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00332	0,00554	0,00301	0,00501
PILAR 01	PT2	6	0,00769	0,01282	0,00592	0,00986
PILAR 01	PT3	9	0,01141	0,01902	0,00812	0,01353
	PT4	12	0,01388	0,02313	0,00948	0,01581
	COBERTURA	15	0,01489	0,02481	0,0099	0,0165
	Térreo	0	0	0	0	0
	PT1	3	0,00317	0,00529	0,00283	0,00472
DII AD 02	PT2	6	0,00758	0,01263	0,00578	0,00963
PILAR 02	PT3	9	0,01128	0,01881	0,00797	0,01328
	PT4	12	0,01374	0,0229	0,00932	0,01554
	COBERTURA	15	0,01489	0,02469	0,00981	0,01635
	Térreo	0	0	0	0	0
	PT1	3	0,00303	0,00506	0,00272	0,00454
DII AD 02	PT2	6	0,00746	0,01244	0,00568	0,00946
PILAR 03	PT3	9	0,01117	0,01861	0,00786	0,0131
	PT4	12	0,01362	0,02271	0,00922	0,01536
	COBERTURA	15	0,01475	0,02459	0,00975	0,01625
	Térreo	0	0	0	0	0
	PT1	3	0,00302	0,00502	0,00297	0,00494
PILAR 04	PT2	6	0,00745	0,01241	0,00589	0,00981
PILAR 04	PT3	9	0,01115	0,01859	0,00809	0,01348
	PT4	12	0,01361	0,02269	0,00945	0,01574
	COBERTURA	15	0,01475	0,02458	0,00988	0,01647
	Térreo	0	0	0	0	0
	PT1	3	0,00287	0,00478	0,0028	0,00467
PILAR 05	PT2	6	0,00733	0,01221	0,00575	0,00959
FILAR 03	PT3	9	0,00733	0,01839	0,00794	0,01324
	PT4	12	0,01348	0,02247	0,0093	0,01549
	COBERTURA	15	0,01468	0,02447	0,0098	0,01633
	Térreo	0	0	0	0	0
	PT1	3	0,00277	0,00462	0,00271	0,00452
PILAR 06	PT2	6	0,00721	0,01203	0,00567	0,00945
FILAK UO	PT3	9	0,01092	0,01821	0,00785	0,01309
	PT4	12	0,01338	0,02229	0,00921	0,01534
	COBERTURA	15	0,01462	0,02436	0,00974	0,01624

APÊNDICE O – Deslocamentos horizontais provenientes da ação do vento nos pórticos planos - Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00276	0,0046	0,00293	0,00488
PILAR 07	PT2	6	0,0072	0,01201	0,00586	0,00976
PILAR 07	PT3	9	0,01091	0,01819	0,00805	0,01342
	PT4	12	0,01337	0,02227	0,00941	0,01569
	COBERTURA	15	0,01461	0,02434	0,00986	0,01644
	Térreo	0	0	0	0	0
	PT1	3	0,00267	0,00445	0,00277	0,00462
DII AD 00	PT2	6	0,00711	0,01184	0,00573	0,00955
PILAR 08	PT3	9	0,01081	0,01802	0,00792	0,0132
	PT4	12	0,01327	0,02211	0,00927	0,01545
	COBERTURA	15	0,01455	0,02425	0,00978	0,01631
	Térreo	0	0	0	0	0
	PT1	3	0,00262	0,00436	0,00271	0,00451
DIL AD OO	PT2	6	0,00702	0,01171	0,00566	0,00943
PILAR 09	PT3	9	0,01073	0,01788	0,00785	0,01308
	PT4	12	0,01319	0,02198	0,0092	0,01533
	COBERTURA	15	0,0145	0,02416	0,00974	0,01623
	Térreo	0	0	0	0	0
	PT1	3	0,00261	0,00435	0,00289	0,00482
DII 4 D 10	PT2	6	0,00702	0,01169	0,00583	0,00971
PILAR 10	PT3	9	0,01072	0,01787	0,00802	0,01337
	PT4	12	0,01318	0,02197	0,00938	0,01564
	COBERTURA	15	0,01449	0,02415	0,00984	0,01641
	Térreo	0	0	0	0	0
	PT1	3	0,00256	0,00427	0,00275	0,00459
DIL AD 11	PT2	6	0,00695	0,01158	0,00571	0,00952
PILAR 11	PT3	9	0,01065	0,01775	0,0079	0,01316
	PT4	12	0,01312	0,02186	0,00925	0,01542
	COBERTURA	15	0,01444	0,02407	0,00977	0,01628
	Térreo	0	0	0	0	0
	PT1	3	0,00254	0,00423	0,0027	0,00451
DIL AD 10	PT2	6	0,00689	0,01149	0,00565	0,00942
PILAR 12	PT3	9	0,01059	0,01765	0,00784	0,01307
	PT4	12	0,01306	0,02177	0,00919	0,01532
	COBERTURA	15	0,0144	0,02401	0,00974	0,01623

APÊNDICE O – Deslocamentos horizontais provenientes da ação do vento nos pórticos planos - Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00253	0,00422	0,00286	0,00477
PILAR 13	PT2	6	0,00689	0,01148	0,0058	0,00967
FILAK 13	PT3	9	0,01058	0,01764	0,008	0,01333
	PT4	12	0,01306	0,02176	0,00935	0,01559
	COBERTURA	15	0,0144	0,024	0,00983	0,01638
	Térreo	0	0	0	0	0
	PT1	3	0,00252	0,00419	0,00274	0,00456
PILAR 14	PT2	6	0,00685	0,01142	0,00569	0,00949
FILAK 14	PT3	9	0,01054	0,01757	0,00788	0,01313
	PT4	12	0,01302	0,02169	0,00923	0,01539
	COBERTURA	15	0,01437	0,02395	0,00976	0,01627
	Térreo	0	0	0	0	0
	PT1	3	0,00252	0,0042	0,0027	0,0045
PILAR 15	PT2	6	0,00683	0,01138	0,00565	0,00942
PILAR 13	PT3	9	0,01051	0,01751	0,00784	0,01306
	PT4	12	0,01299	0,02165	0,00919	0,01532
	COBERTURA	15	0,01434	0,0239	0,00973	0,01622
	Térreo	0	0	0	0	0
	PT1	3	0,00252	0,0042	0,00283	0,00472
DIL AD 16	PT2	6	0,00682	0,01137	0,00578	0,00963
PILAR 16	PT3	9	0,0105	0,01751	0,00797	0,01328
	PT4	12	0,01299	0,02164	0,00933	0,01554
	COBERTURA	15	0,01434	0,0239	0,00981	0,01636
	Térreo	0	0	0	0	0
	PT1	3	0,00252	0,00421	0,00272	0,00454
PILAR 17	PT2	6	0,00681	0,01135	0,00568	0,00946
PILAR 17	PT3	9	0,01049	0,01748	0,00786	0,01311
	PT4	12	0,01297	0,02162	0,00922	0,01536
	COBERTURA	15	0,01432	0,02387	0,00975	0,01625
	Térreo	0	0	0	0	0
	PT1	3	0,00253	0,00421	0,0027	0,0045
DII AD 10	PT2	6	0,00681	0,01135	0,00565	0,00942
PILAR 18	PT3	9	0,01048	0,01747	0,00783	0,01306
	PT4	12	0,01297	0,02161	0,00919	0,01531
	COBERTURA	15	0,01432	0,02387	0,00973	0,01622

APÊNDICE P — Deslocamentos horizontais provenientes da ação do vento nos pórticos espaciais - Edificação Simétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00266	0,00443	0,00356	0,00594
PILAR 01	PT2	6	0,00692	0,01153	0,00804	0,01341
FILAR 01	PT3	9	0,01049	0,01749	0,01144	0,01906
	PT4	12	0,01287	0,02145	0,01355	0,02258
	COBERTURA	15	0,01408	0,02347	0,01441	0,02401
	Térreo	0	0	0	0	0
	PT1	3	0,00266	0,00443	0,00356	0,00594
PILAR 02	PT2	6	0,00691	0,01152	0,00804	0,01341
FILAR 02	PT3	9	0,01049	0,01748	0,01144	0,01906
	PT4	12	0,01287	0,02144	0,01355	0,02258
	COBERTURA	15	0,01408	0,02347	0,01441	0,02401
	Térreo	0	0	0	0	0
	PT1	3	0,00265	0,00442	0,00356	0,00594
PILAR 03	PT2	6	0,00691	0,01152	0,00804	0,01341
I ILAK 03	PT3	9	0,01049	0,01748	0,01144	0,01906
	PT4	12	0,01286	0,02144	0,01355	0,02258
	COBERTURA	15	0,01408	0,02347	0,01441	0,02401
	Térreo	0	0	0	0	0
	PT1	3	0,00265	0,00442	0,00356	0,00594
PILAR 04	PT2	6	0,00692	0,01153	0,00804	0,01341
I ILAK 04	PT3	9	0,0105	0,01749	0,01144	0,01906
	PT4	12	0,01287	0,02145	0,01355	0,02259
	COBERTURA	15	0,01409	0,02348	0,01441	0,02401
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,0044	0,00357	0,00594
PILAR 05	PT2	6	0,00691	0,01152	0,00804	0,01341
TILTIK 03	PT3	9	0,01049	0,01748	0,01144	0,01906
	PT4	12	0,01287	0,02144	0,01355	0,02258
	COBERTURA	15	0,01408	0,02347	0,01441	0,02401
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,0044	0,00356	0,00594
PILAR 06	PT2	6	0,00691	0,01152	0,00804	0,01341
1 ILAN 00	PT3	9	0,01049	0,01748	0,01144	0,01906
	PT4	12	0,01286	0,02144	0,01355	0,02258
	COBERTURA	15	0,01408	0,02347	0,01441	0,02401

APÊNDICE P – Deslocamentos horizontais provenientes da ação do vento nos pórticos espaciais - Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,00441	0,00357	0,00595
PILAR 07	PT2	6	0,00692	0,01153	0,00804	0,01341
FILAR 07	PT3	9	0,0105	0,01749	0,01144	0,01907
	PT4	12	0,01287	0,02145	0,01355	0,02259
	COBERTURA	15	0,01408	0,02347	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00263	0,00439	0,00357	0,00595
PILAR 08	PT2	6	0,00691	0,01152	0,00804	0,01341
I ILAK 00	PT3	9	0,01049	0,01748	0,01144	0,01907
	PT4	12	0,01286	0,02144	0,01355	0,02259
	COBERTURA	15	0,01408	0,02347	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,00439	0,00357	0,00595
PILAR 09	PT2	6	0,00691	0,01152	0,00804	0,01341
I ILAK 09	PT3	9	0,01049	0,01748	0,01144	0,01907
	PT4	12	0,01286	0,02144	0,01355	0,02259
	COBERTURA	15	0,01408	0,02347	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,00441	0,00357	0,00595
PILAR 10	PT2	6	0,00691	0,01152	0,00805	0,01341
I ILAK 10	PT3	9	0,01049	0,01749	0,01144	0,01907
	PT4	12	0,01287	0,02144	0,01355	0,02259
	COBERTURA	15	0,01408	0,02347	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00263	0,00439	0,00357	0,00595
PILAR 11	PT2	6	0,00691	0,01151	0,00805	0,01341
	PT3	9	0,01049	0,01748	0,01144	0,01907
	PT4	12	0,01286	0,02143	0,01355	0,02259
	COBERTURA	15	0,01408	0,02346	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,00439	0,00357	0,00595
PILAR 12	PT2	6	0,00691	0,01151	0,00805	0,01341
11111111112	PT3	9	0,01048	0,01747	0,01144	0,01907
	PT4	12	0,01286	0,02143	0,01355	0,02259
	COBERTURA	15	0,01408	0,02346	0,01441	0,02402

APÊNDICE P – Deslocamentos horizontais provenientes da ação do vento nos pórticos espaciais - Edificação Simétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00265	0,00442	0,00357	0,00595
PILAR 13	PT2	6	0,00691	0,01152	0,00805	0,01341
FILAR 13	PT3	9	0,01048	0,01748	0,01144	0,1907
	PT4	12	0,01286	0,02143	0,01356	0,02259
	COBERTURA	15	0,01407	0,02345	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,0044	0,00357	0,00595
PILAR 14	PT2	6	0,00691	0,01151	0,00805	0,01341
IILAK 14	PT3	9	0,01048	0,01746	0,01144	0,01907
	PT4	12	0,01285	0,02142	0,01356	0,02259
	COBERTURA	15	0,01407	0,02345	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00264	0,0044	0,00357	0,00595
PILAR 15	PT2	6	0,0069	0,01151	0,00805	0,01341
I ILAK 13	PT3	9	0,01048	0,01746	0,01144	0,01907
	PT4	12	0,01285	0,02142	0,01356	0,02259
	COBERTURA	15	0,01407	0,02345	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00266	0,00443	0,00357	0,00596
PILAR 16	PT2	6	0,00691	0,01151	0,00805	0,01342
I ILAK 10	PT3	9	0,01047	0,01746	0,01145	0,01908
	PT4	12	0,01285	0,02142	0,01356	0,0226
	COBERTURA	15	0,01406	0,02344	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00265	0,00443	0,00358	0,00596
PILAR 17	PT2	6	0,0069	0,0115	0,00805	0,01342
	PT3	9	0,01047	0,01745	0,01145	0,01908
	PT4	12	0,01285	0,02141	0,01356	0,0226
	COBERTURA	15	0,01406	0,02343	0,01441	0,02402
	Térreo	0	0	0	0	0
	PT1	3	0,00265	0,00442	0,00357	0,00596
PILAR 18	PT2	6	0,0069	0,0115	0,00805	0,01342
	PT3	9	0,01047	0,01745	0,01145	0,01908
	PT4	12	0,01284	0,02141	0,01356	0,0226
	COBERTURA	15	0,01406	0,02343	0,01441	0,02402

APÊNDICE Q — Deslocamentos horizontais provenientes da ação do vento nos pórticos planos - Edificação Assimétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00257	0,00428	0,00276	0,0046
PILAR 01	PT2	6	0,0059	0,00984	0,00539	0,00898
FILAR 01	PT3	9	0,00869	0,01448	0,00739	0,01232
	PT4	12	0,01051	0,01751	0,00864	0,01439
	COBERTURA	15	0,01124	0,01873	0,00901	0,01502
	Térreo	0	0	0	0	0
	PT1	3	0,00241	0,00402	0,00261	0,00435
PILAR 02	PT2	6	0,00578	0,00963	0,00526	0,00877
FILAR 02	PT3	9	0,00855	0,01426	0,00726	0,0121
	PT4	12	0,01037	0,01728	0,0085	0,01416
	COBERTURA	15	0,01117	0,01861	0,00894	0,01489
	Térreo	0	0	0	0	0
	PT1	3	0,00232	0,00387	0,00252	0,0042
PILAR 03	PT2	6	0,0057	0,0095	0,00518	0,00864
FILAR 03	PT3	9	0,00847	0,01413	0,00717	0,01196
	PT4	12	0,01029	0,01714	0,00841	0,01401
	COBERTURA	15	0,01112	0,01854	0,00889	0,01481
	Térreo	0	0	0	0	0
	PT1	3	0,00229	0,00382	0,00272	0,00454
PILAR 04	PT2	6	0,00569	0,00949	0,00535	0,00892
FILAN 04	PT3	9	0,00846	0,01411	0,00736	0,01226
	PT4	12	0,01027	0,01712	0,0086	0,01433
	COBERTURA	15	0,01111	0,01853	0,00899	0,01499
	Térreo	0	0	0	0	0
	PT1	3	0,00217	0,0361	0,00258	0,0043
PILAR 05	PT2	6	0,00557	0,00928	0,00524	0,00873
FILAR 03	PT3	9	0,00834	0,0139	0,00723	0,01206
	PT4	12	0,01015	0,01691	0,00847	0,01411
	COBERTURA	15	0,01105	0,01841	0,00892	0,01487
	Térreo	0	0	0	0	0
	PT1	3	0,00212	0,00354	0,00251	0,00419
PILAR 06	PT2	6	0,0055	0,00917	0,00518	0,00863
1 ILAN 00	PT3	9	0,00827	0,01378	0,00717	0,01194
	PT4	12	0,01008	0,0168	0,0084	0,014
	COBERTURA	15	0,011	0,01833	0,00888	0,0148

APÊNDICE Q — Deslocamentos horizontais provenientes da ação do vento nos pórticos planos - Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
	Térreo	0	0	0	0	0
	PT1	3	0,00211	0,00353	0,00268	0,00447
PILAR 07	PT2	6	0,00549	0,00915	0,00532	0,00887
I ILAK 07	PT3	9	0,00826	0,01376	0,00733	0,01221
	PT4	12	0,01007	0,01678	0,00856	0,01427
	COBERTURA	15	0,01099	0,01832	0,00897	0,01495
	Térreo	0	0	0	0	0
	PT1	3	0,00205	0,00342	0,00256	0,00426
PILAR 08	PT2	6	0,00541	0,00901	0,00522	0,0087
FILAK 06	PT3	9	0,00816	0,01361	0,00721	0,01202
	PT4	12	0,00998	0,01663	0,00844	0,01407
	COBERTURA	15	0,01093	0,01822	0,00891	0,01485
	Térreo	0	0	0	0	0
	PT1	3	0,00204	0,0034	0,00251	0,00418
PILAR 09	PT2	6	0,00536	0,00894	0,00517	0,00862
FILAR 09	PT3	9	0,00811	0,01352	0,00716	0,01193
	PT4	12	0,00993	0,01655	0,00839	0,01398
	COBERTURA	15	0,01089	0,01815	0,00888	0,01479
	Térreo	0	0	0	0	0
	PT1	3	0,00203	0,00339	0,00266	0,00443
PILAR 10	PT2	6	0,00536	0,00893	0,0053	0,00884
FILAK 10	PT3	9	0,00811	0,0135	0,0073	0,01217
	PT4	12	0,00992	0,01654	0,00854	0,01423
	COBERTURA	15	0,01089	0,01814	0,00896	0,01494
	Térreo	0	0	0	0	0
	PT1	3	0,00201	0,00335	0,00254	0,00424
PILAR 11	PT2	6	0,0053	0,00884	0,00521	0,00868
FILAK II	PT3	9	0,00804	0,0134	0,0072	0,012
	PT4	12	0,00986	0,01644	0,00843	0,01405
	COBERTURA	15	0,01084	0,01806	0,0089	0,01483
	Térreo	0	0	0	0	0
	PT1	3	0,002	0,00334	0,0025	0,00417
PILAR 12	PT2	6	0,00527	0,00879	0,00517	0,00861
FILAR 12	PT3	9	0,008	0,01334	0,00715	0,01192
	PT4	12	0,00983	0,01638	0,00839	0,01398
	COBERTURA	15	0,01081	0,01801	0,00887	0,01479

APÊNDICE Q — Deslocamentos horizontais provenientes da ação do vento nos pórticos planos - Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
PILAR 13	Térreo	0	0	0	0	0
	PT1	3	0,002	0,00334	0,00264	0,00439
	PT2	6	0,00527	0,00878	0,00528	0,00881
	PT3	9	0,008	0,01333	0,00728	0,01214
	PT4	12	0,00983	0,01638	0,00852	0,0142
	COBERTURA	15	0,01081	0,01801	0,00895	0,01491
	Térreo	0	0	0	0	0
	PT1	3	0,002	0,00333	0,00253	0,00422
PILAR 14	PT2	6	0,00524	0,00873	0,00519	0,00866
FILAK 14	PT3	9	0,00796	0,01326	0,00719	0,01198
	PT4	12	0,00979	0,01631	0,00842	0,01403
	COBERTURA	15	0,01077	0,01796	0,00889	0,01482
	Térreo	0	0	0	0	0
	PT1	3	0,002	0,00333	0,0025	0,00417
PILAR 15	PT2	6	0,00522	0,0087	0,00516	0,00861
FILAR 13	PT3	9	0,00794	0,01323	0,00715	0,01192
	PT4	12	0,00977	0,01628	0,00838	0,01397
	COBERTURA	15	0,01076	0,01793	0,00887	0,01479
	Térreo	0	0	0	0	0
	PT1	3	0,002	0,00333	0,00261	0,00436
PILAR 16	PT2	6	0,00522	0,0087	0,00526	0,00877
FILAK 10	PT3	9	0,00793	0,01322	0,00726	0,0121
	PT4	12	0,00977	0,01628	0,0085	0,01416
	COBERTURA	15	0,01076	0,01793	0,00894	0,0149
PILAR 17	Térreo	0	0	0	0	0
	PT1	3	0,002	0,00334	0,00252	0,0042
	PT2	6	0,00521	0,00868	0,00518	0,00864
	PT3	9	0,00792	0,0132	0,00717	0,01196
	PT4	12	0,00975	0,01626	0,00841	0,01401
	COBERTURA	15	0,01074	0,0179	0,00889	0,01481
PILAR 18	Térreo	0	0	0	0	0
	PT1	3	0,002	0,00334	0,0025	0,00417
	PT2	6	0,00521	0,00868	0,00516	0,00861
	PT3	9	0,00791	0,01319	0,00715	0,01192
	PT4	12	0,00975	0,01625	0,00838	0,01397
	COBERTURA	15	0,01074	0,0179	0,00887	0,01479

APÊNDICE R — Deslocamentos horizontais provenientes da ação do vento nos pórticos espaciais - Edificação Assimétrica.

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
DU AD 01	Térreo	0	0	0	0	0
	PT1	3	0,00204	0,00339	0,00328	0,00547
	PT2	6	0,00537	0,00895	0,00736	0,01226
PILAR 01	PT3	9	0,00819	0,01365	0,01042	0,01738
	PT4	12	0,01009	0,01681	0,01233	0,02055
	COBERTURA	15	0,01109	0,01848	0,01309	0,02182
	Térreo	0	0	0	0	0
	PT1	3	0,00203	0,00338	0,00326	0,00543
PILAR 02	PT2	6	0,00536	0,00894	0,00728	0,01213
PILAR 02	PT3	9	0,00818	0,01364	0,01031	0,01718
	PT4	12	0,01008	0,0168	0,01218	0,02031
	COBERTURA	15	0,01109	0,01848	0,01293	0,02155
	Térreo	0	0	0	0	0
	PT1	3	0,00203	0,00338	0,00324	0,0054
PILAR 03	PT2	6	0,00536	0,00893	0,00723	0,01205
PILAR 03	PT3	9	0,00818	0,01364	0,01023	0,01704
	PT4	12	0,01008	0,0168	0,1209	0,02014
	COBERTURA	15	0,01109	0,01848	0,01283	0,02137
	Térreo	0	0	0	0	0
	PT1	3	0,00206	0,00344	0,00328	0,00547
PILAR 04	PT2	6	0,00538	0,00897	0,00736	0,01226
FILAR 04	PT3	9	0,00816	0,01359	0,01042	0,01737
	PT4	12	0,01	0,01667	0,01233	0,02054
	COBERTURA	15	0,01096	0,01827	0,01309	0,02181
	Térreo	0	0	0	0	0
	PT1	3	0,00205	0,00342	0,00326	0,00543
PILAR 05	PT2	6	0,00538	0,00896	0,00728	0,01213
PILAR 03	PT3	9	0,00815	0,01358	0,01031	0,01718
	PT4	12	0,01	0,01666	0,01218	0,02031
	COBERTURA	15	0,01096	0,01827	0,01293	0,02155
	Térreo	0	0	0	0	0
PILAR 06	PT1	3	0,00206	0,00343	0,00324	0,0054
	PT2	6	0,00538	0,00896	0,00723	0,01205
	PT3	9	0,00815	0,01358	0,01023	0,01705
	PT4	12	0,01	0,01666	0,1209	0,02014
	COBERTURA	15	0,01096	0,01827	0,01282	0,02137

APÊNDICE R – Deslocamentos horizontais provenientes da ação do vento nos pórticos espaciais - Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
PILAR 07	Térreo	0	0	0	0	0
	PT1	3	0,0021	0,0035	0,00328	0,00547
	PT2	6	0,0054	0,009	0,00736	0,01226
	PT3	9	0,00812	0,01353	0,01042	0,01737
	PT4	12	0,00992	0,01653	0,01233	0,02055
	COBERTURA	15	0,01083	0,01806	0,01309	0,02181
	Térreo	0	0	0	0	0
	PT1	3	0,00209	0,00349	0,00326	0,00543
PILAR 08	PT2	6	0,00539	0,00899	0,00728	0,01214
FILAK 00	PT3	9	0,00811	0,01351	0,01031	0,01718
	PT4	12	0,00991	0,01651	0,01218	0,02031
	COBERTURA	15	0,01083	0,01805	0,01293	0,02155
	Térreo	0	0	0	0	0
	PT1	3	0,0021	0,00349	0,00324	0,0054
PILAR 09	PT2	6	0,00539	0,00898	0,00723	0,01205
PILAR 09	PT3	9	0,00811	0,01351	0,01023	0,01705
	PT4	12	0,00991	0,01651	0,1209	0,02015
	COBERTURA	15	0,01083	0,01805	0,01283	0,02138
	Térreo	0	0	0	0	0
	PT1	3	0,00213	0,00356	0,00329	0,00548
PILAR 10	PT2	6	0,00541	0,00901	0,00736	0,01226
PILAR 10	PT3	9	0,00809	0,01348	0,01043	0,01738
	PT4	12	0,00986	0,01643	0,01233	0,02056
	COBERTURA	15	0,01075	0,01791	0,01309	0,02182
	Térreo	0	0	0	0	0
	PT1	3	0,00213	0,00354	0,00326	0,00544
DII AD 11	PT2	6	0,0054	0,009	0,00728	0,01214
PILAR 11	PT3	9	0,00808	0,01347	0,01031	0,01718
	PT4	12	0,00985	0,01642	0,01219	0,02031
	COBERTURA	15	0,01074	0,0179	0,01293	0,02155
	Térreo	0	0	0	0	0
PILAR 12	PT1	3	0,00213	0,00355	0,00324	0,00541
	PT2	6	0,0054	0,009	0,00723	0,01205
	PT3	9	0,00808	0,01347	0,01023	0,01705
	PT4	12	0,00985	0,01642	0,1209	0,02015
	COBERTURA	15	0,01074	0,0179	0,01283	0,02138

APÊNDICE R – Deslocamentos horizontais provenientes da ação do vento nos pórticos espaciais - Edificação Assimétrica (continuação).

Pilar	Pavimento	Nível	Combinação 01	Combinação 02	Combinação 03	Combinação 04
PILAR 13	Térreo	0	0	0	0	0
	PT1	3	0,00217	0,00362	0,00329	0,00548
	PT2	6	0,00542	0,00903	0,00736	0,01227
	PT3	9	0,00805	0,01342	0,01043	0,01738
	PT4	12	0,00979	0,01631	0,01233	0,02056
	COBERTURA	15	0,01064	0,01774	0,01309	0,02182
	Térreo	0	0	0	0	0
	PT1	3	0,00217	0,00361	0,00326	0,00544
PILAR 14	PT2	6	0,00541	0,00902	0,00728	0,01214
FILAK 14	PT3	9	0,00805	0,01341	0,01031	0,01718
	PT4	12	0,00978	0,0163	0,01219	0,02031
	COBERTURA	15	0,01064	0,01773	0,01293	0,02156
	Térreo	0	0	0	0	0
	PT1	3	0,00217	0,00361	0,00325	0,00541
PILAR 15	PT2	6	0,00541	0,00901	0,00723	0,01205
PILAR 13	PT3	9	0,00805	0,01341	0,01023	0,01705
	PT4	12	0,00978	0,0163	0,01209	0,02015
	COBERTURA	15	0,01064	0,01773	0,01283	0,02138
	Térreo	0	0	0	0	0
	PT1	3	0,00221	0,00369	0,0033	0,00549
PILAR 16	PT2	6	0,00542	0,00904	0,00737	0,01228
FILAK 10	PT3	9	0,00802	0,01336	0,01043	0,01739
	PT4	12	0,00972	0,0162	0,01234	0,02057
	COBERTURA	15	0,01054	0,01756	0,0131	0,02183
	Térreo	0	0	0	0	0
	PT1	3	0,00221	0,00368	0,00327	0,00545
PILAR 17	PT2	6	0,00542	0,00903	0,00729	0,01215
FILAK 17	PT3	9	0,00801	0,01335	0,01031	0,01719
	PT4	12	0,00971	0,01619	0,01219	0,02032
	COBERTURA	15	0,01053	0,01756	0,01294	0,02156
	Térreo	0	0	0	0	0
PILAR 18	PT1	3	0,00221	0,00368	0,00325	0,00542
	PT2	6	0,00542	0,00903	0,00723	0,01206
	PT3	9	0,00801	0,01335	0,01023	0,01706
	PT4	12	0,00971	0,01618	0,121	0,02016
	COBERTURA	15	0,01053	0,01755	0,01283	0,02138