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RESUMO

A percepgao ambiental em tempo real apresenta-se como um desafio inovador para otimizar a
segurancga ¢ o desempenho dos veiculos na competi¢do Baja SAE. Este trabalho apresenta um
estudo comparativo (benchmarking) entre as arquiteturas de redes neurais convolucionais Fully
Convolutional Network e U-Net, com a finalidade de determinar o modelo que oferece o melhor
balanco entre acurdcia de segmentagdo e potencial de eficiéncia para futura implantacdo em
sistemas embarcados de baixo custo. A metodologia foi sistematicamente estruturada seguindo
o ciclo PACE (Plan, Analyze, Construct, Execute), iniciando com a criagdo de um conjunto de
dados customizado, composto por 138 imagens de competigdes reais, as quais foram rotuladas
manualmente com sete classes de interesse. A avaliagdo quantitativa, baseada nas métricas de
Intersection over Union (loU), Coeficiente de Dice e Acuracia Categorica, demonstrou a
superioridade da arquitetura FCN-8s. O modelo FCN-8s alcangou um loU de 0,7324 e um
Coeficiente de Dice de 0,8319, superando a U-Net, que obteve 0,6838 e 0,8071,
respectivamente. Conclui-se que, embora a FCN-8s apresente maior precisao de segmentagao
para este dominio, a sele¢do final para a implantagdo embarcada dependera de uma analise
subsequente do desempenho computacional (tempo de inferéncia e uso de memoria) no
hardware alvo, o que exigird a conversao dos modelos para o formato TensorFlow Lite.

Palavras-chave: segmentagdo semantica; Baja SAE; redes neurais convolucionais; sistemas
embarcados.



ABSTRACT

Low-cost environmental awareness represents an innovative challenge to improve the safety
and performance of vehicles in the Baja SAE competition. This work presents a comparative
study (benchmarking) between the Fully Convolutional Network (FCN-8s) and U-Net
convolutional neural network architectures, aiming to determine the model that offers the best
balance between segmentation accuracy and efficiency potential for future deployment on low-
cost embedded systems. The methodology was systematically structured following the PACE
(Plan, Analyze, Construct, Execute) cycle, beginning with the creation of a custom dataset
composed of 138 images from actual competitions, which were manually labeled with seven
classes of interest. The quantitative evaluation, based on Intersection over Union (IoU), Dice
Coefficient, and Categorical Accuracy metrics, demonstrated the superiority of the FCN-8s
architecture. The FCN-8s model achieved an IoU of 0.7324 and a Dice Coefficient of 0.8319,
surpassing the U-Net, which obtained 0.6838 and 0.8071, respectively. It is concluded that,
although FCN-8s exhibits greater segmentation precision for this domain, the final selection for
embedded deployment will depend on a subsequent analysis of computational performance
(inference time and memory usage) on the target hardware, which will require converting the
models to the TensorFlow Lite format.

Keywords: semantic segmentation; Baja SAE; convolutional neural networks; embedded
systems.
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1 INTRODUCAO

A competicao Baja SAE Brasil representa um dos maiores desafios de engenharia para
académicos de graduacdo, propondo o projeto, a construgdo e a validagdo de um protdtipo de
veiculo off-road de alto desempenho. Embora a robustez mecanica seja o alicerce do projeto, o
sucesso em provas de longa duracdo (enduro) esta intrinsecamente ligado a capacidade do
sistema de interagir de forma segura com um ambiente nao estruturado e hostil. Nesse cenario,
a percep¢do ambiental em tempo real emerge ndo apenas como um diferencial, mas como um
fator critico de sobrevivéncia do protétipo. Em condic¢des de visibilidade degradada e fadiga do
piloto, a capacidade automatica de identificar obstaculos, delimitar o trajeto navegavel e
detectar outros competidores torna-se determinante para evitar colisdes e atolamentos, acoes
fundamentais para a otimizagdo da pilotagem e, sobretudo, para a garantia da seguranga
operacional (Fang; Cai, 2021).

Tradicionalmente, a interpretacdo do ambiente depende exclusivamente do piloto.
Contudo, a evolugdo dos sistemas eletronicos e da inteligéncia artificial abre precedente para o
desenvolvimento de sistemas de assisténcia ao piloto, aumentando a consciéncia situacional.
Dentre as tecnologias disponiveis, a visdo computacional, por meio da andlise de imagens
digitais, oferece uma solugdo rica em informacdes e de custo relativamente baixo.
Especificamente, a técnica de segmentagdo semantica, que consiste em classificar cada pixel de
uma imagem em uma categoria pré-definida, destaca-se como uma abordagem poderosa para
uma compreensao densa e detalhada da cena. Através dela, é possivel gerar um mapa completo
do ambiente, distinguindo com precisdo areas de “pista”, “gramado”, “lama”, “obstaculo”,
“cone”, “pessoa” e carro”.

Apesar de seu potencial, a implementagdo de modelos de segmentagdo semantica de
ultima geragdo, baseados em redes neurais profundas, impde um desafio substancial. Tais
modelos demandam elevado poder computacional, geralmente suprido por Unidades de
Processamento Grafico dedicadas, que sdo invidveis em um protdtipo Baja SAE devido a
restrigoes severas de custo, consumo energético, peso e dissipagdo térmica. A aplicagdo desta
tecnologia ¢ classificada como inovadora justamente por seu ineditismo no cenario atual da
competi¢do: até o0 momento, ndo ha registros na literatura técnica ou nos boxes da competicao
de equipes que tenham validado a implementacdo embarcada de um sistema de percepgao densa
dessa natureza em seus veiculos off-road. A concretizagdo dessa proposta depende, portanto,

da superacdo de uma lacuna tecnologica: a adaptagdo de arquiteturas de redes neurais para
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operar eficientemente em sistemas embarcados de baixo custo, como a Raspberry Pi (Silva,
2024).

Diante do exposto, este trabalho propde um estudo comparativo (benchmarking) entre
duas das mais influentes arquiteturas de segmentagdo semantica, a Fully Convolutional
Network (FCN) e a U-Net, com o propoésito de avaliar seu desempenho e determinar sua
viabilidade para a aplicacdo em veiculos Baja SAE. A escolha dessas arquiteturas justifica-se
por apresentarem abordagens distintas e fundamentais para a segmentacdo densa, sendo
amplamente reconhecidas na literatura por sua eficacia (Long; Shelhamer; Darrell, 2015).

A relevancia desta pesquisa reside em sua dupla contribuicdo. Do ponto de vista
académico, realiza-se uma analise de desempenho de arquiteturas classicas em um dominio de
aplicag@o novo e desafiador, para o qual ndo existem conjuntos de dados publicos disponiveis.
Do ponto de vista pratico e tecnoldgico, este estudo representa o passo inicial para o
desenvolvimento de um sistema de percepcdo ambiental de baixo custo que pode ser integrado
aos veiculos da competi¢do, constituindo uma inova¢do com potencial para aumentar a
competitividade e a seguranca das equipes.

O presente trabalho estd estruturado em cinco capitulos. O Capitulo 2 apresenta a
fundamentagao tedrica sobre os conceitos de segmentacdo semantica e as arquiteturas FCN e
U-Net. O Capitulo 3 detalha a metodologia empregada na constru¢do do dataset, na
implementagdo e no treinamento dos modelos. O Capitulo 4 apresenta e discute os resultados
quantitativos e qualitativos obtidos. Por fim, o Capitulo 5 expde as conclusoes do estudo, suas

limitagdes e aponta dire¢des para trabalhos futuros.
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2 OBJETIVOS

Este capitulo delineia os propositos norteadores desta pesquisa, definindo a meta central

e os passos metodologicos necessarios para alcanga-la.
2.1 OBIJETIVO GERAL

Realizar uma andlise comparativa de desempenho entre as arquiteturas de redes neurais
convolucionais FCN e U-Net para a tarefa de segmentacao semantica, mediante a constru¢ao
de uma base de dados aplicada ao ambiente da competicdo Baja SAE, com vistas a futura

implementagdo em sistemas embarcados.
2.2 OBJETIVOS ESPECIFICOS

Para que o objetivo geral fosse alcancado, foram estabelecidos os seguintes objetivos
especificos:
- construir um conjunto de dados customizado, composto por imagens representativas do
ambiente da competicdo Baja SAE, e realizar a rotulagem manual para a tarefa de segmentacao
semantica;
- desenvolver e treinar os algoritmos de redes neurais baseando-se nas arquiteturas FCN-8s e
U-Net, utilizando a base de dados desenvolvida e um ambiente computacional alinhado a
plataforma-alvo;
- comparar quantitativamente e avaliar o desempenho dos modelos treinados por meio de
métricas de avaliagdo padrdo para segmentagdo, como Intersection over Union (loU),
Coeficiente de Dice, Acuracia Categorica e Fungao de Perda (Loss);
- analisar os resultados obtidos para determinar qual arquitetura apresenta o balango mais
promissor entre acuracia de segmentacdo e potencial de eficiéncia computacional para a

aplicacao embarcada.
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3 REVISAO DE LITERATURA

Este capitulo contém a exposi¢do ordenada do assunto tratado, apresentando os

conceitos e as obras com maior relevancia para a pesquisa desenvolvida.
3.1 REDES NEURAIS CONVOLUCIONAIS (CNN)

As Redes Neurais Convolucionais (Convolutional Neural Networks - CNNs) constituem
uma classe de modelos de aprendizado profundo que se tornaram o padrao-ouro para tarefas de
andlise de imagens (Lecun; Bengio; Hinton, 2015). Sua arquitetura ¢ inspirada no cortex visual
humano e se mostra extremamente eficaz na extragao de hierarquias de caracteristicas espaciais

a partir de dados com topologia de grade.
3.1.1 Fully Convolutional Network (FCN)

A camada de convolugdo ¢ o elemento fundamental de uma CNN, responsavel por
aprender a representar as caracteristicas locais da entrada. A operagdo central ¢ a convolugao,
que consiste em deslizar um pequeno filtro (ou kernel) sobre a entrada, calculando o produto
escalar em cada posi¢do. Esse mecanismo de compartilhamento de pesos (weight sharing)
através do kernel ¢ o que permite a rede detectar padrdes (como arestas ou texturas)
independentemente de sua posicao na imagem (Lecun et al., 1998).

Considere uma entrada I bidimensional (por exemplo, um mapa de caracteristicas de
uma camada anterior ou a propria imagem de entrada) e um filtro K. A operacao de convolugao
(I.K) em uma posigdo (x,y) ¢ definida, na pratica da literatura de Deep Learning, como uma
correlagdo-cruzada (cross-correlation), conforme a Equagao 1 (Goodfellow; Bengio; Courville,

2016).

CLRO@N =) > 1e=iy=DKQ) (1)
i j

Onde i e j percorrem as dimensdes do filtro K.

Se uma imagem de entrada possui multiplas canais, o filtro também tera a mesma
profundidade de canais, ¢ a convolugdo ¢ realizada sobre todos os canais, somando-se os
resultados (Guimaraes, 2025). A saida de cada filtro ¢ um mapa de caracteristicas 2D. Se a

camada utiliza N filtros, a saida sera um volume 3D com N mapas de caracteristicas.
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3.2 SEGMENTACAO SEMANTICA

A segmentacdo semantica ¢ uma tarefa de visdo computacional que visa atribuir um
rotulo de classe a cada pixel de uma imagem (Long; Shelhamer; Darrell, 2015), realizando uma
classificacdo densa. Diferentemente da classificagdo de imagens (que atribui um tnico roétulo a
imagem inteira), a segmentacdo particiona a imagem em regides semanticamente coerentes

(Garcia-Garcia et al., 2018), conforme ilustrado na Figura 1.

plo de Segmentacdo Semantica.

Road Sidewalk Building B rFence

I Pole [ Vegetation B vehicle I Unlabel
Fonte: Jeong, Yoon, Park (2018).

3.3 ARQUITETURAS PARA SEGMENTACAO SEMANTICA

A transi¢do das Redes Neurais Convolucionais (CNNs) de tarefas de classificagdo de
imagem para a segmentacdo semantica exigiu o desenvolvimento de arquiteturas
especializadas. O desafio central reside em realizar uma predi¢do densa, classificando cada
pixel, e ndo apenas a imagem inteira. Para isso, a maioria das arquiteturas modernas adota um
paradigma de codificador-decodificador (encoder-decoder). O codificador, tipicamente uma
rede de classificagdo pré-treinada, ¢ responsavel por extrair caracteristicas hierarquicas e
reduzir a resolugdo espacial. O decodificador, por sua vez, tem a tarefa de realizar o upsampling
desses mapas de caracteristicas para reconstruir o mapa de segmentacdo na resolugdo original

da entrada. Diversas arquiteturas foram propostas na literatura para otimizar essa tarefa. Entre
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as mais influentes e que servem de base para muitos trabalhos subsequentes, destacam-se a

Fully Convolutional Network (FCN) e a U-Net, que sdo os objetos de estudo deste trabalho.
3.3.1 Fully Convolutional Network (FCN)

A FCN, proposta por Long, Shelhamer e Darrell (2015), foi uma arquitetura seminal
que adaptou com sucesso as CNNs de classificagdo para a tarefa de segmentagdo. A principal
inovagao foi a substitui¢ao das camadas totalmente conectadas (fully connected) por camadas
convolucionais 1 x 1, permitindo que a rede processasse imagens de qualquer tamanho e gerasse
um mapa de calor como saida. Para refinar os detalhes da segmentagao, a FCN introduziu o
conceito de skip connections (conexdes de atalho), que combinam informag¢des de diferentes
escalas da rede (Long; Shelhamer; Darrell, 2015).

Devido as operagdes de pooling e stride nas camadas convolucionais iniciais (o
encoder), a resolucao espacial dos mapas de caracteristicas ¢ progressivamente reduzida. Para
recuperar o mapa de segmentagdo para a resolu¢do da imagem original, a FCN emprega
camadas de convolucdo transposta (framsposed convolution), também conhecidas como
"deconvolugdo" ou upsampling (Zeiler; Fergus, 2014). Esta operacao ¢ o inverso da convolucao
e permite que a rede aprenda a expandir a resolugdo espacial, preenchendo os detalhes perdidos.

A Figura 2 ilustra o conceito de upsampling em uma FCN.

Figura 2 — Ilustragdo do Conceito de Upsampling em uma FCN.

Upsampling
I l Output
2x upsampled 2x upsampled &x upsampled
prediction prediction prediction (FCN-8s)
Encoder module 11
(conv layers not shown) l { \
' | |
image pooll pool2 pool3 poold poold i poold | s pool3 —
I prediction prediction
1 e
/ E
s
‘ - 4

Input

Skip connections

Fonte: Noori, Shaker, Azeez (2022).

3.3.2 Arquitetura U-Net

Desenvolvida por Ronneberger, Fischer e Brox (2015), a U-Net notabilizou-se por sua

arquitetura simétrica em formato de "U", conforme esquematizado na Figura 3. Tal arquitetura
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¢ composta por um caminho de contragdo (encoder) € um caminho de expansdo (decoder). O
seu diferencial reside nas proeminentes skip comnnections, que concatenam os mapas de
caracteristicas de alta resolugdo do encoder com os mapas correspondentes no decoder,

resultando em segmentagdes com limites de objetos muito bem definidos.

Figura 3 — Arquitetura U-Net simplificada.

7@ '

T i
UUU U[@

upsample

- clC ‘ﬁ o ¢
12 comvolution | O @

Fonte: Cheng et al. (2025).

3.4 METRICAS DE AVALIACAO

A avaliagdo quantitativa do desempenho de modelos de segmentagdo semantica ¢
fundamental para comparar diferentes arquiteturas e compreender sua eficacia na tarefa de
classificacdo de pixel a pixel. As métricas sdo calculadas comparando a madscara de

segmentacdo predita pelo modelo com a mascara de referéncia, conhecida como ground truth.
3.4.1 Intersection over Union (loU)

A métrica loU, também denominada Coeficiente de Jaccard, ¢ uma das mais
amplamente utilizadas na avaliagdo de segmentacao de imagens (Everingham ef al., 2010). Ela
mede a similaridade entre dois conjuntos de amostras e ¢ calculada como a razdo entre a area
de intersecdo e a area de unido entre a mascara predita e a mascara de ground truth, conforme
a Equagdo 2.

Area of Intersection AUB
Area of Union “ANB

2
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O valor do loU varia de 0 a 1, onde 0 indica nenhuma sobreposicao entre as mascaras e
1 representa uma sobreposi¢do perfeita. Para tarefas de segmentagdo multiclasse, o loU ¢
frequentemente calculado para cada classe individualmente e, em seguida, uma média ¢ obtida

para fornecer uma medida geral do desempenho do modelo em todas as classes.
3.4.2 Coeficiente de DICE (DSC) ou F1-Score

O Cocficiente de Dice (DSC), também conhecido como FI-Score ou Indice de
Sorensen-Dice, ¢ outra métrica comum para avaliar a similaridade espacial entre dois objetos
segmentados (Sorensen, 1948). Tal métrica, ¢ definida como duas vezes a area de interse¢ao
entre a mascara predita e a mascara de ground truth, dividida pela soma das areas das duas

mascaras, como mostra a Equagao 3.

2.area od overlapped 3)

Dice Coef ficient =
ff total area

O DSC também varia de 0 a 1. Embora sejam correlacionadas, o DSC tende a ser mais
sensivel a pequenas discrepancias em objetos menores e pode penalizar mais severamente

predi¢des incorretas em comparagao com o loU.
3.4.3 Acuracia Categorica (Categorical Accuracy)

A Acuracia Categorica, no contexto da segmentacdo semantica, representa a proporgao
de pixels que foram classificados corretamente pelo modelo em relagdo ao niimero total de

pixels na imagem. A Equacdo 4 mostra como ¢ calculada.

. Numero de Pixels Classificados Corretamente (4)
Acuracia = . -
Numero Total de Pixels

Embora seja uma métrica intuitiva, a acuracia pode ser enganosa em casos de
desequilibrio de classes, onde classes majoritarias dominam o calculo e podem mascarar um
desempenho insatisfatorio em classes minoritarias (Garcia-Garcia et al., 2018). Por exemplo,
em uma imagem com predominancia de "gramado", um modelo que classifica a maioria dos
pixels como "gramado" pode ter uma alta acuracia, mesmo que falhe ao detectar pequenos
"obstaculos". Por isso, loU e Dice sdo geralmente preferidos para uma avaliagdo mais robusta

em segmentagao.
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3.4.4 Fung¢do de Perda (Loss Function)

A Fungdo de Perda ¢ o mecanismo matematico que viabiliza o aprendizado da rede
neural. Ela opera como o objetivo de otimizacdo, fornecendo um valor escalar diferencidvel
que quantifica o erro entre a predi¢io e o ground truth. E através da minimizagao desta funcio
que o algoritmo de Backpropagation calcula os gradientes necessarios para atualizar os pesos
da rede (Goodfellow; Bengio; Courville, 2016).

Para tarefas de segmentacdo semantica, onde cada pixel ¢ classificado em uma das N
classes, a funcao de perda mais comum ¢ a Entropia Cruzada Categorica (Categorical Cross-

Entropy). Para um tnico pixel i e N classes, a perda ¢ calculada pela Equagao 5.

N
L==)" yilog (Po) ®)
c=1

Onde:

Yic: € 1 se o pixel i pertence a classe ¢ (no ground truth), e 0 caso contrario;

P; .: € a probabilidade predita pelo modelo para o pixel i pertencer a classe c.

A Entropia Cruzada Categodrica penaliza fortemente as predi¢des incorretas com alta
confianga, guiando a rede a ajustar seus pesos para que as probabilidades preditas se aproximem

das distribuigdes verdadeiras de cada pixel.
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4 METODOLOGIA

A presente secdo detalha a abordagem metodologica adotada para a realizagdo deste
trabalho, abrangendo a classificacdo da pesquisa, as estratégias de levantamento e analise de
dados, e a descri¢ao das atividades desenvolvidas. O fluxo de trabalho foi estruturado com base
no ciclo PACE (Plan, Analyze, Construct, Execute), um framework que organiza o
desenvolvimento de projetos de forma sistematica e iterativa, alinhado aos principios de MLOps
(Machine Learning Operations) para garantir a reprodutibilidade, o monitoramento ¢ a

qualidade da engenharia de machine learning.
4.1 CLASSIFICACAO DA PESQUISA

A pesquisa pode ser caracterizada quanto a abordagem, como quantitativa, pois envolve
a coleta e analise de dados numéricos (métricas de desempenho dos modelos, tempos de
inferéncia) com o objetivo de quantificar e comparar a performance das arquiteturas FCN-8s e
U-Net. Quanto a natureza, classifica-se como pesquisa aplicada, uma vez que busca gerar
conhecimento com um objetivo pratico e direto: desenvolver um sistema de percepcao
ambiental para veiculos Baja SAE que seja eficiente e de baixo custo. Quanto aos objetivos, a
pesquisa possui natureza descritiva e explicativa, pois caracteriza e compara o desempenho dos
modelos e busca identificar os fatores que determinam suas diferencas de performance. Quanto
aos procedimentos, trata-se de uma pesquisa experimental, devido ao treinamento e validagao
controlada dos modelos, combinada com uma pesquisa bibliografica para o embasamento

tedrico.
4.2 FLUXO DE TRABALHO METODOLOGICO (PACE)

O desenvolvimento do projeto seguiu as quatro fases do ciclo PACE, conforme
detalhado no fluxograma da Figura 4, que ilustra o itinerario da pesquisa, desde a concepcao

dos dados até a analise final dos modelos.
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Figura 4 — Fluxograma Metodoldgico baseado no Ciclo PACE.

Fase de Planejamento (Plan) Fase de Analise e Construgéo (Analyze &
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Iterativo
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Fase de Execugdo e Verificagéo (Execute
& Check)

Treinamento dos modelos
Monitoramento para garantir a
rastreabilidade dos experimentos

Extragdo de conclusodes da
pesquisa

Fonte: Autoria propria.

4.3 FASE DE PLANEJAMENTO (PLAN)

Nesta fase inicial, foram definidos o escopo do problema, os objetivos, 0s recursos

necessarios € as estratégias para a aquisi¢do e preparacao dos dados.
4.3.1 Coleta e Estruturagdo do Conjunto de Dados

Dada a inexisténcia de conjuntos de dados publicos e anotados para o dominio
especifico da competi¢do Baja SAE, a primeira etapa do planejamento consistiu na curadoria e
criagdo de um conjunto de dados. Foi compilado um total de 138 imagens, cuja aquisi¢io seguiu
uma estratégia de fontes mistas para garantir variabilidade: aproximadamente 80% das amostras
foram obtidas do repositdrio oficial da SAE Brasil (imagens registradas pela organizagdo no
Baja SAE Nacional 2025), 15% foram capturadas por autoria propria in loco durante testes de
campo, ¢ 0s 5% restantes consistem em registros da competicao de Michigan 2024 (Enduro)
obtidos via web.

Visando a padronizagdo necessaria para a arquitetura da Rede Neural Convolucional,
todas as imagens passaram por um pré-processamento de redimensionamento espacial,
resultando em tensores com dimensoes fixas de (576, 640, 3) (altura, largura e canais RGB). O

dataset abrange diferentes tipos de terreno e condigdes de iluminagao, € os dados brutos foram
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estruturados nos diretdrios images/ e annotated/ para garantir a rastreabilidade e versionamento

no pipeline de treinamento.
4.3.2 Defini¢do das Classes de Segmentagdo

Com base nos requisitos de percep¢ao ambiental para um veiculo off-road, foram
definidas sete classes de interesse: carro, pessoa, gramado, pista, obstaculo, cone e lama. Uma
oitava classe, background, foi implicitamente definida para representar todas as demais areas

ndo rotuladas.
4.3.3 Escolha de Ferramentas e Arquiteturas

Selecionou-se o ecossistema Python como base de desenvolvimento, utilizando o
framework TensorFlow com a API Keras. E importante ressaltar que as arquiteturas U-Net e
FCN-8s ndo foram obtidas de bibliotecas de modelos pré-compilados; ambas foram
implementadas integralmente através da constru¢cdo manual das camadas.

A codificagdo dos algoritmos baseou-se rigorosamente nas descri¢des topoldgicas e
diagramas apresentados na literatura original de cada arquitetura. Essa abordagem de
implementagdo prépria permitiu o controle total sobre os hiperparametros e a adaptacdo
necessaria das camadas de entrada e saida para as dimensdes especificas dos dados deste

projeto.
4.4 FASE DE ANALISE E CONSTRUCAO (ANALYZE & CONSTRUCT)

Esta fase compreendeu o tratamento dos dados brutos e a implementacdo técnica dos

modelos de deep learning.
4.4.1 Anotagdo e Gerag¢do de Mascaras

As imagens coletadas foram rotuladas manualmente utilizando a ferramenta LabelMe.
Para cada imagem, foi gerado um arquivo JSON contendo os poligonos que delimitam cada
objeto de interesse e sua respectiva classe. Conforme implementado, a fungdo
create_multi_masks processa os arquivos JSON para gerar as mdascaras de segmentacdo. A

Figura 5 apresenta um esquema que ilustra essa etapa do processo.
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Figura 5 — Processo de Rotulagem de Imagens com o LabelMe para Segmentacdo Semantica.
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Fonte: Autoria propria.

Para cada imagem, foi criada uma matriz tridimensional de formato (Altura, Largura,
N _Classes), onde cada um dos N° canais corresponde a uma mascara bindria para uma classe
especifica, servindo como o ground truth para o treinamento supervisionado.

A Figura 6 apresenta o diagrama do projeto. O conjunto de dados utilizado para o
treinamento € composto por imagens e suas respectivas coordenadas de rdtulo, obtidas a partir
da rotulacdo manual realizada na ferramenta LabelMe. Apds o treinamento, uma imagem do
conjunto de validagao pode ser selecionada para inferéncia, etapa em que os modelos processam

a entrada e geram como saida a respectiva imagem segmentada.

Figura 6 — Fluxo de Processamento para Segmentagdo Semantica de Imagens com Redes Neurais
Convolucionais.
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Fonte: Autoria propria.
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As Figuras 7 (a, b, ¢ e d) exemplificam as mascaras de segmentacgdo, que servem como
rotulos (ground truth) para o treinamento supervisionado. Esses rétulos fornecem a informagao
fundamental, pixel-a-pixel, permitindo que a rede neural aprenda a associar os padrdes visuais
de entrada a sua correspondente classe semantica (como 'pista’, 'carro', ‘pessoa’ etc.). O objetivo

final € capacitar o modelo a generalizar esse aprendizado, realizando a segmentagdo precisa em

imagens inéditas.

Figura 7 — Processamento de Imagens e Anotagdes, Associando Imagens as Labels Feitas no Labelme.
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Fonte: Autoria propria.

4.4.2 Implementagdo das Arquiteturas

U-Net: foi construida com uma estrutura simétrica composta por um caminho de
contragao (encoder) com 5 blocos convolucionais € um caminho de expansao (decoder) com 4
blocos. Cada bloco convolucional (conv_block) consiste em duas camadas Conv2D (com kernel

3 x 3 e padding "same"), onde cada uma ¢ imediatamente seguida por uma camada
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BatchNormalization e uma ativagao relu.

O caminho de contracdo (encoder block) aplica um conv_block e, em seguida, uma
camada MaxPooling2D (2 x 2) para subamostragem. O caminho de expansao (decoder block)
utiliza uma camada Conv2DTranspose (2 x 2, strides 2) para o upsampling, concatena sua saida
com os mapas de caracteristicas correspondentes do encoder (via skip connections) e, em
seguida, aplica um conv_block para refinar os mapas de caracteristicas.

A implementagdo dessa arquitetura foi parametrizada pela fungdo U-Net
(pretrained=False, base=1). A Tabela 1 detalha as camadas, os filtros e as dimensdes de saida,

assumindo uma imagem de entrada de (576, 640, 3) e o parametro base=1.

Tabela 1 — Ariuitetura U-Net Customizada iiretrained=False, base=1 i

Entrada Input - (576, 640, 3)
Encoder Bloco Enc 1 (encoder_block) 64
conv_block (2x [Conv, BN,
ReLU]) 64 (576, 640, 64) Salva s1
MaxPooling?D (2x2) - (288, 320, 64)
Bloco Enc 2 (encoder_block) 128
conv_block (2x [Conv, BN,
ReLU]) 128 (288, 320, 128) Salva s2
MaxPooling2D (2x2) - (144, 160, 128)
Bloco Enc 3 (encoder_block) 256
conv_block (2x [Conv, BN,
ReLUJ) 256 (144, 160, 256) Salva s3
MaxPooling2D (2x2) - (72, 80, 256)
Bloco Enc 4 (encoder_block) 512
conv_block (2x [Conv, BN,
ReLUj) 512 (72, 80, 512) Salva s4
MaxPooling?D (2x2) - (36, 40, 512)
Bottleneck Bloco Central (conv_block) 1024
conv_block (2x [Conv, BN,
ReLU]) 1024 (36, 40, 1024)
Decoder Bloco Dec 1 (decoder block) 512
Conv2DTranspose (2x2) 512 (72, 80, 512)
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Concatenagdo - (72, 80, 1024) Recebe s4
conv_block (2x [Conv, BN,
ReLUJ) 512 (72, 80, 512)
Bloco Dec 2 (decoder_block) 256
Conv2DTranspose (2x2) 256 (144, 160, 256)
Concatenagdo - (144, 160, 512) Recebe s3
conv_block (2x [Conv, BN,
ReLUJ) 256 (144, 160, 256)
Bloco Dec 3 (decoder_block) 128
Conv2DTranspose (2x2) 128 (288, 320, 128)
Concatenagdo - (288, 320, 256) Recebe s2
conv_block (2x [Conv, BN,
ReLUJ) 128 (288, 320, 128)
Bloco Dec 4 (decoder_block) 64
Conv2DTranspose (2x2) 64 (576, 640, 64)
Concatenagdo - (576, 640, 128) Recebe sl
conv_block (2x [Conv, BN,
ReLUJ) 64 (576, 640, 64)
Saida Conv2D (Ix1) n_classes (576, 640, n_classes)

Fonte: Autoria propria.

Além da arquitetura, os hiperparametros de compilacdo e treinamento definidos no

codigo sdo sumarizados na Tabela 2.

Tabela 2 — Hiierlparﬁmetros de Conﬁiurac;éo e Comiilagﬁo do Modelo U-Net.

Ativacdo (Camadas Internas) relu Conforme conv_block
Normalizagdo BatchNormalization Conforme conv_block
Inicializador de Kernel glorot_uniform (default) Padrdo do Keras para Conv2D
Otimizador Adam Conforme codigo
Taxa de Aprendizado le-4 Conforme codigo
Caso Binario (n_classes=1)
Fungdo de Perda BinaryCrossentropy Para segmentagao binaria
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Ativagdo de Saida sigmoid Para segmentagao binaria

Mgétrica Principal MeanloU(num_classes=2) IoU para fundo/frente

Caso Multiclasse (n_classes > 1)

Funcdo de Perda CategoricalCrossentropy Para segmentagdo multiclasse

Ativagdo de Saida softmax Para segmentagdo multiclasse

Fonte: Autoria propria.

FCN-8s: a implementagdo seguiu a arquitetura classica, utilizando um backbone
inspirado na VGG. As camadas densas foram substituidas por convolugdes 1 x 1, e a
segmentac¢do final ¢ refinada pela fusao de predicdes de trés escalas distintas da rede (pool3,
pool4 e a camada final), combinadas através de operagdes de Add apds o devido upsampling
com camadas Conv2DTranspose.

A arquitetura  implementada  utiliza a @ VGG16  (include top=False,
weights="imagenet") como backbone, conforme detalhado na Tabela 3. A escolha intencional
pela VGG16, em detrimento de arquiteturas mais leves como a MobileNet, justifica-se pela
necessidade de estabelecer um comparativo fiel a proposta original da FCN-8s (Long et al.,
2015). O objetivo foi avaliar o desempenho de uma rede densa e com alta capacidade de
extracdo de caracteristicas (VGG16) em contraste com a topologia baseada em encoder-
decoder simétrico da U-Net. Dessa forma, isolam-se as varidveis arquiteturais, utilizando a
FCN-VGG16 como o padrao-ouro de acuracia (upper bound de capacidade), ainda que a custa

de maior carga computacional. E assumida uma entrada de (576, 640, 3).

Tabela 3 — Ariuitetura FCN-8s (Backbone VGG16).

Entrada Input (576, 640, 3)
Backbone blockl pool (288, 320, 64)
(Encoder) block2 pool (144, 160, 128)
block3 pool (72, 80, 256) Salva f3 (Stride 8)
block4_pool (36, 40, 512) Salva f4 (Stride 16)
block5 _pool (18, 20, 512) Salva 5 (Stride 32)
Decoder Caminho 1 (de f5)
(Fuséo) Conv2D (Ix1) em f5 (18, 20, n_classes)
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Conv2DTranspose (2x2) (36, 40, n_classes) (Upsample x2)
Caminho 2 (de f4)
Conv2D (Ix1) em f4 (36, 40, n_classes)
Fusdo 1 (f5 + f4)
Add() (36, 40, n_classes)
Conv2DTranspose (2x2) (72, 80, n_classes) (Upsample x2)
Caminho 3 (de 3)
Conv2D (1x1) em f3 (72, 80, n_classes)
Fusdo 2 (f3 + f4 + £5)
Add() (72, 80, n_classes)
Upsampling Final
Conv2DTranspose (8x8) (576, 640, n_classes) (Upsample x8)
Saida Activation (576, 640, n_classes)

Fonte: Autoria propria.

Os parametros de compilagdo definidos no cdédigo para o modelo FCN-8s estdo

sumarizados na Tabela 4.

Tabela 4 — Hiieiarémetros de Conﬁiragﬁo e Comiilagﬁo do Modelo FCN-8s.

Backbone VGGi6 Pré-treinado (ImageNet), congelado
Otimizador Adam Conforme codigo
Taxa de Aprendizado le-4 Conforme codigo
Caso Binario (n_classes=1)
Func¢do de Perda BinaryCrossentropy Para segmentagao bindria
Ativacdo de Saida sigmoid Para segmentagdo bindria

Mgétrica Principal

MeanloU(mum_classes=2)

IoU para fundo/frente

Caso Multiclasse (n_classes > 1)

Func¢ao de Perda

CategoricalCrossentropy

Para segmentagdo multiclasse

Ativagdo de Saida

softmax

Para segmentagdo multiclasse

Meétricas

CategoricalAccuracy, MeanloU

Acuracia e loU

Fonte: Autoria propria.
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4.4.3 Defini¢do da Funcgado de Perda e Otimizador

Para ambos os modelos, foi utilizada a fung¢do de perda categorical crossentropy,
adequada para problemas de classificagdo multiclasse pixel a pixel. O otimizador escolhido foi
0 Adam, com uma taxa de aprendizado (learning rate) de 1 e -4, conhecido por sua eficiéncia

e robustez em problemas de visdo computacional.
4.5 FASE DE EXECUCAO E VERIFICACAO (EXECUTE & CHECK)

Nesta fase, os modelos foram treinados, e seu desempenho foi sistematicamente

monitorado, aplicando praticas de MLOps para garantir a rastreabilidade dos experimentos.
4.5.1 Processo de Treinamento

A execugdo dos experimentos e o treinamento dos modelos foram realizados em uma
estacdo de trabalho equipada com processador AMD Ryzen 7 (arquitetura de 8 nticleos fisicos e
16 threads), operando em conjunto com uma unidade de processamento grafico (GPU) com
frequéncia de clock de até¢ 2000 MHz.

O pipeline de treinamento foi orquestrado pelo script desenvolvido, que implementa um

ciclo de aprendizado ao longo de 300 épocas.
4.6 FASE DE ANALISE E EXPANSAO (ANALYZE & EXPAND)

Na fase final, os melhores modelos foram avaliados de forma conclusiva, ¢ os resultados

foram analisados para extrair as conclusdes da pesquisa.
4.6.1 Anadlise Quantitativa

Os checkpoints dos modelos com melhor desempenho foram carregados e avaliados em
um conjunto de teste nunca visto. As métricas de JoU, Coeficiente de Dice, Acuracia Categorica

e Perda Final foram calculadas para realizar a comparag@o objetiva entre a U-Net ¢ a FCN-8s.
4.6.2 Anadlise Qualitativa e de Inferéncia

Conforme o script inferencia.py, foi simulado um cendario de implantagdo. Os modelos
foram convertidos para o formato TensorFlow Lite (.tflite), uma versao otimizada para

dispositivos com recursos limitados. A inferéncia foi executada em um conjunto de 50 imagens
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de teste, ¢ o tempo de processamento de cada imagem foi cronometrado para estimar o
desempenho em potencial no hardware-alvo. As mascaras de saida foram visualmente
inspecionadas para identificar pontos fortes e fracos de cada arquitetura na segmentagdo de
diferentes classes, com a op¢do de mesclar a mascara com a imagem original para melhor

visualizagdo (Background = True).
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5 RESULTADOS E ANALISES

Na Tabela 5 estdo sintetizados os resultados dos parametros obtidos apds os
treinamentos e valida¢des dos modelos. Para este benchmarking, pensou-se utilizar as variaveis:
Funcao de Perda, Coeficiente de Dice, Intersection over Union ¢ a Acuracia Categodrica

(Categorical Accuracy).

Tabela 5 — Métricas de Avalia¢do dos Modelos U-Net ¢ FCN-8s.

U-Net 0,3651 0,8071 0,6838 0,8653

FCN - 8s 0,3706 0,8319 0,7324 0,8939

Fonte: Autoria propria.

A avaliagdo comparativa dos modelos U-Net e FCN-8s apresenta variaveis importantes
do desempenho deles. Conforme apresentado na Tabela 1, a arquitetura FCN-8s demonstrou
um desempenho superior em diversas métricas de segmentacdao, alcangando valores de
Coeficiente de Dice (0,8319), IoU (0,7324) e Acuracia Categoérica (0,8939) mais elevados em
comparacao com a U-Net (Dice: 0,8071, IoU: 0,6838, Acuracia Categorica: 0,8653). Por outro
lado, a U-Net apresentou uma Joss ligeiramente menor (0,3651 contra 0,3706 da FCN-8s), o
que pode indicar um ajuste sutilmente diferente durante o treinamento.

Embora os resultados de acuracia favorecam a FCN-8s, este trabalho reconhece a
importancia critica da analise de desempenho computacional (como FPS, tamanho do modelo,
consumo de RAM e, principalmente, a compatibilidade) para aplicacdes embarcadas. A
arquitetura FCN-8s, por ser baseada na VGG 16 e possuir um decoder mais complexo, apresenta
alta complexidade computacional. Isso a torna, em seu formato atual, incompativel com
hardwares de capacidade restrita como a Raspberry Pi 3. Sua implementagdo pratica exigiria
uma conversao para o formato TensorFlow Lite, com otimizacdes de quantizagao.

Embora as métricas de acuracia, como o coeficiente Dice e loU, favorecam ligeiramente
a arquitetura FCN-8s, a viabilidade de implantagdo em sistemas embarcados exige uma analise
rigorosa do custo computacional. A comparagdo estrutural entre os modelos revela uma
discrepancia significativa: a FCN-8s, fundamentada na densa arquitetura VGG16, possui
aproximadamente [18.035.704] milhdes de pardmetros, resultando em um modelo com
tamanho estimado de [89+] MB. Em contraste, a U-Net implementada demonstra ser

substancialmente mais leve, contabilizando [7.691.325] milhdes de pardmetros (uma redugio
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de [~44,14]%) e ocupando apenas [22,4] MB em disco.

A avaliacdo qualitativa do modelo selecionado ¢ apresentada na Figura 8, que compila
as mascaras de segmentacdo geradas pela U-Net sobre o conjunto de validagdo. A disposi¢ao
das amostras busca demonstrar a robustez da rede frente a complexidade progressiva dos
cendrios: as subfiguras (a) e (b) validam a deteccdo da geometria bésica da Pista em condig¢des
de iluminagdao controlada; em (c) e (d), observa-se a capacidade do modelo em distinguir
texturas de solo, segmentando corretamente areas de Lama adjacentes ao tracado; os casos (€)
e (f) evidenciam a identificagdo de obstaculos dinamicos (Veiculo) mesmo em terrenos
acidentados; por fim, as amostras (g) e (h) ilustram o cendrio de maior entropia, onde a rede
realiza a segmentacdo multiclasse simultdnea de Lama, Veiculo e Pista, confirmando sua

aptiddo para interpretar a sobreposi¢ao de elementos tipica do ambiente real do Baja SAE.

Figura 8 — Predigdes da U-Net Usando as Imagens do Conjunto de Validacao.
a) Pista _ b) Pista
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¢) Lama e pista d) Lama e pista

S 0

iculo

“ ‘
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Fonte: A&aptao do Baja SAE 2025.
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5.1 ANALISE CRITICA E PROXIMOS PASSOS

Embora as métricas de acuricia favoregam a arquitetura FCN-8s, a decisdo sobre qual
modelo serd embarcado deve considerar também aspectos de desempenho computacional, ainda
nao avaliados diretamente em hardwares como Raspberry Pi.

Como préximos passos, planeja-se a conversao dos modelos para o formato TensorFlow
Lite, mais leve e adequado para dispositivos embarcados com restricoes de memoria e
processamento. Essa conversdo € necessaria, uma vez que a Raspberry Pi 4 apresenta limitacdes
de compatibilidade com bibliotecas utilizadas na fase de desenvolvimento.

Além disso, serd conduzida a analise pratica do desempenho dos modelos no dispositivo
embarcado, com foco em:

- tempo de inferéncia (FPS);
- uso de RAM durante a execugao;
- tamanho final do modelo (em disco);
- compatibilidade com otimizagdes adicionais (como quantizacao de redes).
Essas medidas sdo essenciais para garantir a viabilidade da operagdo em tempo real nos

veiculos Baja SAE e permitir futuras expansdes do sistema de visdo computacional.
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6 CONCLUSAO

O presente trabalho teve como objetivo central desenvolver e avaliar arquiteturas de
deep learning para segmentac¢ao semantica, visando sua futura implementagdo em um sistema
de visao computacional embarcado para veiculos da competicao Baja SAE.

Para atingir este objetivo, foram implementadas, treinadas e comparadas duas das
arquiteturas mais influentes na area: a U-Net e a FCN-8s. A analise quantitativa dos resultados,
apresentada no capitulo anterior, permitiu validar a eficdcia de ambas as redes na tarefa de
segmentagdo das classes de interesse (pista, obstaculos, pessoas etc.).

Os resultados demonstraram que, em termos de métricas de acuracia, a arquitetura FCN-
8s apresentou um desempenho superior (loU: 0,7324; Dice: 0,8319) em comparacao com a U-
Net (IoU: 0,6838; Dice: 0,8071) no conjunto de dados utilizado. Este achado sugere que a
estratégia da FCN-8s, de fundir mapas de caracteristicas de diferentes escalas (8s, 16s, 32s), foi
mais eficaz para capturar os detalhes semanticos da cena.

No entanto, este trabalho também identificou que a acurdcia de segmentagdo ¢ apenas
uma das varidveis na equagao para um sistema embarcado de tempo real. A principal hipotese
da pesquisa — a viabilidade de execucdo em tempo real — ainda requer validagdo pratica.
Conforme discutido, a analise de desempenho computacional (tempo de inferéncia/FPS, uso de
RAM, tamanho do modelo) ¢ uma etapa critica e mandatdria que ndo foi coberta nesta fase do
projeto.

Como desdobramento e principal encaminhamento para trabalhos futuros, estabelece-
se a necessidade imediata de converter os modelos treinados (com foco prioritario na FCN-8s,
devido a sua maior acuracia) para o formato TensorFlow Lite. Esta etapa ¢ essencial para
otimizar os modelos para dispositivos com restricdes de processamento € memoria.
Subsequentemente, deverdo ser conduzidos testes rigorosos de inferéncia no hardware-alvo
para quantificar o desempenho real.

A proje¢do deste trabalho, uma vez superada a etapa de validagdo em hardware, é de
grande repercussao para a equipe Baja SAE. A implementagao bem-sucedida de um sistema de
segmentacdo semantica em tempo real estabelece a fundagdo técnica para o desenvolvimento
de sistemas de navegagao autdbnoma, permitindo ao veiculo identificar caminhos transitaveis e
de obstaculos. Este projeto, portanto, ndo se encerra em si, mas serve como um pilar essencial

para a proxima geragao de sistemas de percepgao e controle autonoma.
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