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RESUMO 

A percepção ambiental em tempo real apresenta-se como um desafio inovador para otimizar a 
segurança e o desempenho dos veículos na competição Baja SAE. Este trabalho apresenta um 
estudo comparativo (benchmarking) entre as arquiteturas de redes neurais convolucionais Fully 

Convolutional Network e U-Net, com a finalidade de determinar o modelo que oferece o melhor 
balanço entre acurácia de segmentação e potencial de eficiência para futura implantação em 
sistemas embarcados de baixo custo. A metodologia foi sistematicamente estruturada seguindo 
o ciclo PACE (Plan, Analyze, Construct, Execute), iniciando com a criação de um conjunto de 
dados customizado, composto por 138 imagens de competições reais, as quais foram rotuladas 
manualmente com sete classes de interesse. A avaliação quantitativa, baseada nas métricas de 
Intersection over Union (IoU), Coeficiente de Dice e Acurácia Categórica, demonstrou a 
superioridade da arquitetura FCN-8s. O modelo FCN-8s alcançou um IoU de 0,7324 e um 
Coeficiente de Dice de 0,8319, superando a U-Net, que obteve 0,6838 e 0,8071, 
respectivamente. Conclui-se que, embora a FCN-8s apresente maior precisão de segmentação 
para este domínio, a seleção final para a implantação embarcada dependerá de uma análise 
subsequente do desempenho computacional (tempo de inferência e uso de memória) no 
hardware alvo, o que exigirá a conversão dos modelos para o formato TensorFlow Lite. 

Palavras-chave: segmentação semântica; Baja SAE; redes neurais convolucionais; sistemas 
embarcados.



 

 

 

ABSTRACT 

Low-cost environmental awareness represents an innovative challenge to improve the safety 
and performance of vehicles in the Baja SAE competition. This work presents a comparative 
study (benchmarking) between the Fully Convolutional Network (FCN-8s) and U-Net 
convolutional neural network architectures, aiming to determine the model that offers the best 
balance between segmentation accuracy and efficiency potential for future deployment on low-
cost embedded systems. The methodology was systematically structured following the PACE 
(Plan, Analyze, Construct, Execute) cycle, beginning with the creation of a custom dataset 
composed of 138 images from actual competitions, which were manually labeled with seven 
classes of interest. The quantitative evaluation, based on Intersection over Union (IoU), Dice 
Coefficient, and Categorical Accuracy metrics, demonstrated the superiority of the FCN-8s 
architecture. The FCN-8s model achieved an IoU of 0.7324 and a Dice Coefficient of 0.8319, 
surpassing the U-Net, which obtained 0.6838 and 0.8071, respectively. It is concluded that, 
although FCN-8s exhibits greater segmentation precision for this domain, the final selection for 
embedded deployment will depend on a subsequent analysis of computational performance 
(inference time and memory usage) on the target hardware, which will require converting the 
models to the TensorFlow Lite format. 

Keywords: semantic segmentation; Baja SAE; convolutional neural networks; embedded 
systems. 
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1 INTRODUÇÃO 

A competição Baja SAE Brasil representa um dos maiores desafios de engenharia para 

acadêmicos de graduação, propondo o projeto, a construção e a validação de um protótipo de 

veículo off-road de alto desempenho. Embora a robustez mecânica seja o alicerce do projeto, o 

sucesso em provas de longa duração (enduro) está intrinsecamente ligado à capacidade do 

sistema de interagir de forma segura com um ambiente não estruturado e hostil. Nesse cenário, 

a percepção ambiental em tempo real emerge não apenas como um diferencial, mas como um 

fator crítico de sobrevivência do protótipo. Em condições de visibilidade degradada e fadiga do 

piloto, a capacidade automática de identificar obstáculos, delimitar o trajeto navegável e 

detectar outros competidores torna-se determinante para evitar colisões e atolamentos, ações 

fundamentais para a otimização da pilotagem e, sobretudo, para a garantia da segurança 

operacional (Fang; Cai, 2021). 

Tradicionalmente, a interpretação do ambiente depende exclusivamente do piloto. 

Contudo, a evolução dos sistemas eletrônicos e da inteligência artificial abre precedente para o 

desenvolvimento de sistemas de assistência ao piloto, aumentando a consciência situacional. 

Dentre as tecnologias disponíveis, a visão computacional, por meio da análise de imagens 

digitais, oferece uma solução rica em informações e de custo relativamente baixo. 

Especificamente, a técnica de segmentação semântica, que consiste em classificar cada pixel de 

uma imagem em uma categoria pré-definida, destaca-se como uma abordagem poderosa para 

uma compreensão densa e detalhada da cena. Através dela, é possível gerar um mapa completo 

do ambiente, distinguindo com precisão áreas de “pista”, “gramado”, “lama”, “obstáculo”, 

“cone”, “pessoa” e carro”. 

Apesar de seu potencial, a implementação de modelos de segmentação semântica de 

última geração, baseados em redes neurais profundas, impõe um desafio substancial. Tais 

modelos demandam elevado poder computacional, geralmente suprido por Unidades de 

Processamento Gráfico dedicadas, que são inviáveis em um protótipo Baja SAE devido a 

restrições severas de custo, consumo energético, peso e dissipação térmica. A aplicação desta 

tecnologia é classificada como inovadora justamente por seu ineditismo no cenário atual da 

competição: até o momento, não há registros na literatura técnica ou nos boxes da competição 

de equipes que tenham validado a implementação embarcada de um sistema de percepção densa 

dessa natureza em seus veículos off-road. A concretização dessa proposta depende, portanto, 

da superação de uma lacuna tecnológica: a adaptação de arquiteturas de redes neurais para 
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operar eficientemente em sistemas embarcados de baixo custo, como a Raspberry Pi (Silva, 

2024). 

Diante do exposto, este trabalho propõe um estudo comparativo (benchmarking) entre 

duas das mais influentes arquiteturas de segmentação semântica, a Fully Convolutional 

Network (FCN) e a U-Net, com o propósito de avaliar seu desempenho e determinar sua 

viabilidade para a aplicação em veículos Baja SAE. A escolha dessas arquiteturas justifica-se 

por apresentarem abordagens distintas e fundamentais para a segmentação densa, sendo 

amplamente reconhecidas na literatura por sua eficácia (Long; Shelhamer; Darrell, 2015). 

A relevância desta pesquisa reside em sua dupla contribuição. Do ponto de vista 

acadêmico, realiza-se uma análise de desempenho de arquiteturas clássicas em um domínio de 

aplicação novo e desafiador, para o qual não existem conjuntos de dados públicos disponíveis. 

Do ponto de vista prático e tecnológico, este estudo representa o passo inicial para o 

desenvolvimento de um sistema de percepção ambiental de baixo custo que pode ser integrado 

aos veículos da competição, constituindo uma inovação com potencial para aumentar a 

competitividade e a segurança das equipes. 

O presente trabalho está estruturado em cinco capítulos. O Capítulo 2 apresenta a 

fundamentação teórica sobre os conceitos de segmentação semântica e as arquiteturas FCN e 

U-Net. O Capítulo 3 detalha a metodologia empregada na construção do dataset, na 

implementação e no treinamento dos modelos. O Capítulo 4 apresenta e discute os resultados 

quantitativos e qualitativos obtidos. Por fim, o Capítulo 5 expõe as conclusões do estudo, suas 

limitações e aponta direções para trabalhos futuros. 
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2 OBJETIVOS 

Este capítulo delineia os propósitos norteadores desta pesquisa, definindo a meta central 

e os passos metodológicos necessários para alcançá-la. 

2.1 OBJETIVO GERAL 

 Realizar uma análise comparativa de desempenho entre as arquiteturas de redes neurais 

convolucionais FCN e U-Net para a tarefa de segmentação semântica, mediante a construção 

de uma base de dados aplicada ao ambiente da competição Baja SAE, com vistas à futura 

implementação em sistemas embarcados. 

2.2 OBJETIVOS ESPECÍFICOS 

Para que o objetivo geral fosse alcançado, foram estabelecidos os seguintes objetivos 

específicos: 

- construir um conjunto de dados customizado, composto por imagens representativas do 

ambiente da competição Baja SAE, e realizar a rotulagem manual para a tarefa de segmentação 

semântica; 

- desenvolver e treinar os algoritmos de redes neurais baseando-se nas arquiteturas FCN-8s e 

U-Net, utilizando a base de dados desenvolvida e um ambiente computacional alinhado à 

plataforma-alvo; 

- comparar quantitativamente e avaliar o desempenho dos modelos treinados por meio de 

métricas de avaliação padrão para segmentação, como Intersection over Union (IoU), 

Coeficiente de Dice, Acurácia Categórica e Função de Perda (Loss); 

- analisar os resultados obtidos para determinar qual arquitetura apresenta o balanço mais 

promissor entre acurácia de segmentação e potencial de eficiência computacional para a 

aplicação embarcada. 
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3 REVISÃO DE LITERATURA 

Este capítulo contém a exposição ordenada do assunto tratado, apresentando os 

conceitos e as obras com maior relevância para a pesquisa desenvolvida. 

3.1 REDES NEURAIS CONVOLUCIONAIS (CNN) 

As Redes Neurais Convolucionais (Convolutional Neural Networks - CNNs) constituem 

uma classe de modelos de aprendizado profundo que se tornaram o padrão-ouro para tarefas de 

análise de imagens (Lecun; Bengio; Hinton, 2015). Sua arquitetura é inspirada no córtex visual 

humano e se mostra extremamente eficaz na extração de hierarquias de características espaciais 

a partir de dados com topologia de grade.  

3.1.1 Fully Convolutional Network (FCN) 

A camada de convolução é o elemento fundamental de uma CNN, responsável por 

aprender a representar as características locais da entrada. A operação central é a convolução, 

que consiste em deslizar um pequeno filtro (ou kernel) sobre a entrada, calculando o produto 

escalar em cada posição. Esse mecanismo de compartilhamento de pesos (weight sharing) 

através do kernel é o que permite à rede detectar padrões (como arestas ou texturas) 

independentemente de sua posição na imagem (Lecun et al., 1998). 

Considere uma entrada 𝐼 bidimensional (por exemplo, um mapa de características de 

uma camada anterior ou a própria imagem de entrada) e um filtro 𝐾. A operação de convolução (𝐼. 𝐾) em uma posição (𝑥, 𝑦) é definida, na prática da literatura de Deep Learning, como uma 

correlação-cruzada (cross-correlation), conforme a Equação 1 (Goodfellow; Bengio; Courville, 

2016). 

(𝐼. 𝐾)(𝑥, 𝑦) = ∑𝑖 ∑𝑗 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗)𝐾(𝑖, 𝑗) (1) 

Onde 𝑖 𝑒 𝑗 percorrem as dimensões do filtro 𝐾.  

Se uma imagem de entrada possui múltiplas canais, o filtro também terá a mesma 

profundidade de canais, e a convolução é realizada sobre todos os canais, somando-se os 

resultados (Guimarães, 2025). A saída de cada filtro é um mapa de características 2D. Se a 

camada utiliza N filtros, a saída será um volume 3D com N mapas de características. 
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3.2 SEGMENTAÇÃO SEMÂNTICA 

A segmentação semântica é uma tarefa de visão computacional que visa atribuir um 

rótulo de classe a cada pixel de uma imagem (Long; Shelhamer; Darrell, 2015), realizando uma 

classificação densa. Diferentemente da classificação de imagens (que atribui um único rótulo à 

imagem inteira), a segmentação particiona a imagem em regiões semanticamente coerentes 

(Garcia-Garcia et al., 2018), conforme ilustrado na Figura 1. 

Figura 1 – Exemplo de Segmentação Semântica. 

 
Fonte: Jeong, Yoon, Park (2018). 

3.3 ARQUITETURAS PARA SEGMENTAÇÃO SEMÂNTICA 

A transição das Redes Neurais Convolucionais (CNNs) de tarefas de classificação de 

imagem para a segmentação semântica exigiu o desenvolvimento de arquiteturas 

especializadas. O desafio central reside em realizar uma predição densa, classificando cada 

pixel, e não apenas a imagem inteira. Para isso, a maioria das arquiteturas modernas adota um 

paradigma de codificador-decodificador (encoder-decoder). O codificador, tipicamente uma 

rede de classificação pré-treinada, é responsável por extrair características hierárquicas e 

reduzir a resolução espacial. O decodificador, por sua vez, tem a tarefa de realizar o upsampling 

desses mapas de características para reconstruir o mapa de segmentação na resolução original 

da entrada. Diversas arquiteturas foram propostas na literatura para otimizar essa tarefa. Entre 
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as mais influentes e que servem de base para muitos trabalhos subsequentes, destacam-se a 

Fully Convolutional Network (FCN) e a U-Net, que são os objetos de estudo deste trabalho. 

3.3.1 Fully Convolutional Network (FCN) 

A FCN, proposta por Long, Shelhamer e Darrell (2015), foi uma arquitetura seminal 

que adaptou com sucesso as CNNs de classificação para a tarefa de segmentação. A principal 

inovação foi a substituição das camadas totalmente conectadas (fully connected) por camadas 

convolucionais 1 x 1, permitindo que a rede processasse imagens de qualquer tamanho e gerasse 

um mapa de calor como saída. Para refinar os detalhes da segmentação, a FCN introduziu o 

conceito de skip connections (conexões de atalho), que combinam informações de diferentes 

escalas da rede (Long; Shelhamer; Darrell, 2015). 

Devido às operações de pooling e stride nas camadas convolucionais iniciais (o 

encoder), a resolução espacial dos mapas de características é progressivamente reduzida. Para 

recuperar o mapa de segmentação para a resolução da imagem original, a FCN emprega 

camadas de convolução transposta (transposed convolution), também conhecidas como 

"deconvolução" ou upsampling (Zeiler; Fergus, 2014). Esta operação é o inverso da convolução 

e permite que a rede aprenda a expandir a resolução espacial, preenchendo os detalhes perdidos. 

A Figura 2 ilustra o conceito de upsampling em uma FCN. 

Figura 2 – Ilustração do Conceito de Upsampling em uma FCN. 

 
Fonte: Noori, Shaker, Azeez (2022). 

3.3.2 Arquitetura U-Net 

Desenvolvida por Ronneberger, Fischer e Brox (2015), a U-Net notabilizou-se por sua 

arquitetura simétrica em formato de "U", conforme esquematizado na Figura 3. Tal arquitetura 
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é composta por um caminho de contração (encoder) e um caminho de expansão (decoder). O 

seu diferencial reside nas proeminentes skip connections, que concatenam os mapas de 

características de alta resolução do encoder com os mapas correspondentes no decoder, 

resultando em segmentações com limites de objetos muito bem definidos. 

Figura 3 – Arquitetura U-Net simplificada. 

 
Fonte: Cheng et al. (2025). 

3.4 MÉTRICAS DE AVALIAÇÃO 

A avaliação quantitativa do desempenho de modelos de segmentação semântica é 

fundamental para comparar diferentes arquiteturas e compreender sua eficácia na tarefa de 

classificação de pixel a pixel. As métricas são calculadas comparando a máscara de 

segmentação predita pelo modelo com a máscara de referência, conhecida como ground truth. 

3.4.1 Intersection over Union (IoU) 

A métrica IoU, também denominada Coeficiente de Jaccard, é uma das mais 

amplamente utilizadas na avaliação de segmentação de imagens (Everingham et al., 2010). Ela 

mede a similaridade entre dois conjuntos de amostras e é calculada como a razão entre a área 

de interseção e a área de união entre a máscara predita e a máscara de ground truth, conforme 

a Equação 2. 𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 = 𝐴 ∪ 𝐵𝐴 ∩ 𝐵 (2) 
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O valor do IoU varia de 0 a 1, onde 0 indica nenhuma sobreposição entre as máscaras e 

1 representa uma sobreposição perfeita. Para tarefas de segmentação multiclasse, o IoU é 

frequentemente calculado para cada classe individualmente e, em seguida, uma média é obtida 

para fornecer uma medida geral do desempenho do modelo em todas as classes. 

3.4.2 Coeficiente de DICE (DSC) ou F1-Score 

O Coeficiente de Dice (DSC), também conhecido como F1-Score ou Índice de 

Sørensen-Dice, é outra métrica comum para avaliar a similaridade espacial entre dois objetos 

segmentados (Sorensen, 1948). Tal métrica, é definida como duas vezes a área de interseção 

entre a máscara predita e a máscara de ground truth, dividida pela soma das áreas das duas 

máscaras, como mostra a Equação 3. 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2. 𝑎𝑟𝑒𝑎 𝑜𝑑 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎  
(3) 

O DSC também varia de 0 a 1. Embora sejam correlacionadas, o DSC tende a ser mais 

sensível a pequenas discrepâncias em objetos menores e pode penalizar mais severamente 

predições incorretas em comparação com o IoU. 

3.4.3 Acurácia Categórica (Categorical Accuracy) 

A Acurácia Categórica, no contexto da segmentação semântica, representa a proporção 

de pixels que foram classificados corretamente pelo modelo em relação ao número total de 

pixels na imagem. A Equação 4 mostra como é calculada. 

𝐴𝑐𝑢𝑟á𝑐𝑖𝑎 = 𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑑𝑜𝑠 𝐶𝑜𝑟𝑟𝑒𝑡𝑎𝑚𝑒𝑛𝑡𝑒𝑁ú𝑚𝑒𝑟𝑜 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒 𝑃𝑖𝑥𝑒𝑙𝑠  
(4) 

 Embora seja uma métrica intuitiva, a acurácia pode ser enganosa em casos de 

desequilíbrio de classes, onde classes majoritárias dominam o cálculo e podem mascarar um 

desempenho insatisfatório em classes minoritárias (Garcia-Garcia et al., 2018). Por exemplo, 

em uma imagem com predominância de "gramado", um modelo que classifica a maioria dos 

pixels como "gramado" pode ter uma alta acurácia, mesmo que falhe ao detectar pequenos 

"obstáculos". Por isso, IoU e Dice são geralmente preferidos para uma avaliação mais robusta 

em segmentação. 
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3.4.4 Função de Perda (Loss Function) 

A Função de Perda é o mecanismo matemático que viabiliza o aprendizado da rede 

neural. Ela opera como o objetivo de otimização, fornecendo um valor escalar diferenciável 

que quantifica o erro entre a predição e o ground truth. É através da minimização desta função 

que o algoritmo de Backpropagation calcula os gradientes necessários para atualizar os pesos 

da rede (Goodfellow; Bengio; Courville, 2016). 

 Para tarefas de segmentação semântica, onde cada pixel é classificado em uma das N 

classes, a função de perda mais comum é a Entropia Cruzada Categórica (Categorical Cross-

Entropy). Para um único pixel i e N classes, a perda é calculada pela Equação 5. 

𝐿 = − ∑𝑁
𝐶=1 𝑦𝑖,𝑐𝑙𝑜𝑔 (𝑃𝑖,𝑐) 

(5) 

Onde: 𝑦𝑖,𝑐: é 1 se o pixel 𝑖 pertence à classe 𝑐 (no ground truth), e 0 caso contrário; 𝑃𝑖,𝑐: é a probabilidade predita pelo modelo para o pixel 𝑖 pertencer à classe 𝑐. 

 A Entropia Cruzada Categórica penaliza fortemente as predições incorretas com alta 

confiança, guiando a rede a ajustar seus pesos para que as probabilidades preditas se aproximem 

das distribuições verdadeiras de cada pixel. 
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4 METODOLOGIA 

 A presente seção detalha a abordagem metodológica adotada para a realização deste 

trabalho, abrangendo a classificação da pesquisa, as estratégias de levantamento e análise de 

dados, e a descrição das atividades desenvolvidas. O fluxo de trabalho foi estruturado com base 

no ciclo PACE (Plan, Analyze, Construct, Execute), um framework que organiza o 

desenvolvimento de projetos de forma sistemática e iterativa, alinhado aos princípios de MLOps 

(Machine Learning Operations) para garantir a reprodutibilidade, o monitoramento e a 

qualidade da engenharia de machine learning. 

4.1 CLASSIFICAÇÃO DA PESQUISA 

A pesquisa pode ser caracterizada quanto à abordagem, como quantitativa, pois envolve 

a coleta e análise de dados numéricos (métricas de desempenho dos modelos, tempos de 

inferência) com o objetivo de quantificar e comparar a performance das arquiteturas FCN-8s e 

U-Net. Quanto à natureza, classifica-se como pesquisa aplicada, uma vez que busca gerar 

conhecimento com um objetivo prático e direto: desenvolver um sistema de percepção 

ambiental para veículos Baja SAE que seja eficiente e de baixo custo. Quanto aos objetivos, a 

pesquisa possui natureza descritiva e explicativa, pois caracteriza e compara o desempenho dos 

modelos e busca identificar os fatores que determinam suas diferenças de performance. Quanto 

aos procedimentos, trata-se de uma pesquisa experimental, devido ao treinamento e validação 

controlada dos modelos, combinada com uma pesquisa bibliográfica para o embasamento 

teórico. 

4.2 FLUXO DE TRABALHO METODOLÓGICO (PACE) 

 O desenvolvimento do projeto seguiu as quatro fases do ciclo PACE, conforme 

detalhado no fluxograma da Figura 4, que ilustra o itinerário da pesquisa, desde a concepção 

dos dados até a análise final dos modelos. 
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Figura 4 – Fluxograma Metodológico baseado no Ciclo PACE. 

 
Fonte: Autoria própria. 

4.3 FASE DE PLANEJAMENTO (PLAN) 

 Nesta fase inicial, foram definidos o escopo do problema, os objetivos, os recursos 

necessários e as estratégias para a aquisição e preparação dos dados. 

4.3.1 Coleta e Estruturação do Conjunto de Dados 

Dada a inexistência de conjuntos de dados públicos e anotados para o domínio 

específico da competição Baja SAE, a primeira etapa do planejamento consistiu na curadoria e 

criação de um conjunto de dados. Foi compilado um total de 138 imagens, cuja aquisição seguiu 

uma estratégia de fontes mistas para garantir variabilidade: aproximadamente 80% das amostras 

foram obtidas do repositório oficial da SAE Brasil (imagens registradas pela organização no 

Baja SAE Nacional 2025), 15% foram capturadas por autoria própria in loco durante testes de 

campo, e os 5% restantes consistem em registros da competição de Michigan 2024 (Enduro) 

obtidos via web. 

Visando a padronização necessária para a arquitetura da Rede Neural Convolucional, 

todas as imagens passaram por um pré-processamento de redimensionamento espacial, 

resultando em tensores com dimensões fixas de (576, 640, 3) (altura, largura e canais RGB). O 

dataset abrange diferentes tipos de terreno e condições de iluminação, e os dados brutos foram 
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estruturados nos diretórios images/ e annotated/ para garantir a rastreabilidade e versionamento 

no pipeline de treinamento. 

4.3.2 Definição das Classes de Segmentação 

Com base nos requisitos de percepção ambiental para um veículo off-road, foram 

definidas sete classes de interesse: carro, pessoa, gramado, pista, obstáculo, cone e lama. Uma 

oitava classe, background, foi implicitamente definida para representar todas as demais áreas 

não rotuladas. 

4.3.3 Escolha de Ferramentas e Arquiteturas 

 Selecionou-se o ecossistema Python como base de desenvolvimento, utilizando o 

framework TensorFlow com a API Keras. É importante ressaltar que as arquiteturas U-Net e 

FCN-8s não foram obtidas de bibliotecas de modelos pré-compilados; ambas foram 

implementadas integralmente através da construção manual das camadas. 

A codificação dos algoritmos baseou-se rigorosamente nas descrições topológicas e 

diagramas apresentados na literatura original de cada arquitetura. Essa abordagem de 

implementação própria permitiu o controle total sobre os hiperparâmetros e a adaptação 

necessária das camadas de entrada e saída para as dimensões específicas dos dados deste 

projeto. 

4.4 FASE DE ANÁLISE E CONSTRUÇÃO (ANALYZE & CONSTRUCT) 

 Esta fase compreendeu o tratamento dos dados brutos e a implementação técnica dos 

modelos de deep learning. 

4.4.1 Anotação e Geração de Máscaras 

 As imagens coletadas foram rotuladas manualmente utilizando a ferramenta LabelMe. 

Para cada imagem, foi gerado um arquivo JSON contendo os polígonos que delimitam cada 

objeto de interesse e sua respectiva classe. Conforme implementado, a função 

create_multi_masks processa os arquivos JSON para gerar as máscaras de segmentação. A 

Figura 5 apresenta um esquema que ilustra essa etapa do processo. 
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Figura 5 – Processo de Rotulagem de Imagens com o LabelMe para Segmentação Semântica.  

 

Fonte: Autoria própria. 

Para cada imagem, foi criada uma matriz tridimensional de formato (Altura, Largura, 

N_Classes), onde cada um dos Nº canais corresponde a uma máscara binária para uma classe 

específica, servindo como o ground truth para o treinamento supervisionado. 

 A Figura 6 apresenta o diagrama do projeto. O conjunto de dados utilizado para o 

treinamento é composto por imagens e suas respectivas coordenadas de rótulo, obtidas a partir 

da rotulação manual realizada na ferramenta LabelMe. Após o treinamento, uma imagem do 

conjunto de validação pode ser selecionada para inferência, etapa em que os modelos processam 

a entrada e geram como saída a respectiva imagem segmentada. 

Figura 6 – Fluxo de Processamento para Segmentação Semântica de Imagens com Redes Neurais 
Convolucionais. 

 
Fonte: Autoria própria. 
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 As Figuras 7 (a, b, c e d) exemplificam as máscaras de segmentação, que servem como 

rótulos (ground truth) para o treinamento supervisionado. Esses rótulos fornecem a informação 

fundamental, pixel-a-pixel, permitindo que a rede neural aprenda a associar os padrões visuais 

de entrada à sua correspondente classe semântica (como 'pista', 'carro', ‘pessoa’ etc.). O objetivo 

final é capacitar o modelo a generalizar esse aprendizado, realizando a segmentação precisa em 

imagens inéditas. 

Figura 7 – Processamento de Imagens e Anotações, Associando Imagens às Labels Feitas no Labelme. 
a) Rotulação 1 b) Rotulação 2 

  
c) Rotulação 3 d) Rotulação 4 

  
Fonte: Autoria própria. 

4.4.2 Implementação das Arquiteturas 

 U-Net: foi construída com uma estrutura simétrica composta por um caminho de 

contração (encoder) com 5 blocos convolucionais e um caminho de expansão (decoder) com 4 

blocos. Cada bloco convolucional (conv_block) consiste em duas camadas Conv2D (com kernel 

3 x 3 e padding "same"), onde cada uma é imediatamente seguida por uma camada 
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BatchNormalization e uma ativação relu. 

 O caminho de contração (encoder_block) aplica um conv_block e, em seguida, uma 

camada MaxPooling2D (2 x 2) para subamostragem. O caminho de expansão (decoder_block) 

utiliza uma camada Conv2DTranspose (2 x 2, strides 2) para o upsampling, concatena sua saída 

com os mapas de características correspondentes do encoder (via skip connections) e, em 

seguida, aplica um conv_block para refinar os mapas de características. 

 A implementação dessa arquitetura foi parametrizada pela função U-Net 

(pretrained=False, base=1). A Tabela 1 detalha as camadas, os filtros e as dimensões de saída, 

assumindo uma imagem de entrada de (576, 640, 3) e o parâmetro base=1. 

Tabela 1 – Arquitetura U-Net Customizada (pretrained=False, base=1). 

Etapa Bloco/Camada Filtros Dimensão da Saída (H, W, F) Conexão (Skip) 

Entrada Input - (576, 640, 3)  

Encoder Bloco Enc 1 (encoder_block) 64   

 
conv_block (2x [Conv, BN, 

ReLU]) 
64 (576, 640, 64) Salva s1 

 MaxPooling2D (2x2) - (288, 320, 64)  

 Bloco Enc 2 (encoder_block) 128   

 
conv_block (2x [Conv, BN, 

ReLU]) 
128 (288, 320, 128) Salva s2 

 MaxPooling2D (2x2) - (144, 160, 128)  

 Bloco Enc 3 (encoder_block) 256   

 
conv_block (2x [Conv, BN, 

ReLU]) 
256 (144, 160, 256) Salva s3 

 MaxPooling2D (2x2) - (72, 80, 256)  

 Bloco Enc 4 (encoder_block) 512   

 
conv_block (2x [Conv, BN, 

ReLU]) 
512 (72, 80, 512) Salva s4 

 MaxPooling2D (2x2) - (36, 40, 512)  

Bottleneck Bloco Central (conv_block) 1024   

 
conv_block (2x [Conv, BN, 

ReLU]) 
1024 (36, 40, 1024)  

Decoder Bloco Dec 1 (decoder_block) 512   

 Conv2DTranspose (2x2) 512 (72, 80, 512)  
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Etapa Bloco/Camada Filtros Dimensão da Saída (H, W, F) Conexão (Skip) 

 Concatenação - (72, 80, 1024) Recebe s4 

 
conv_block (2x [Conv, BN, 

ReLU]) 
512 (72, 80, 512)  

 Bloco Dec 2 (decoder_block) 256   

 Conv2DTranspose (2x2) 256 (144, 160, 256)  

 Concatenação - (144, 160, 512) Recebe s3 

 
conv_block (2x [Conv, BN, 

ReLU]) 
256 (144, 160, 256)  

 Bloco Dec 3 (decoder_block) 128   

 Conv2DTranspose (2x2) 128 (288, 320, 128)  

 Concatenação - (288, 320, 256) Recebe s2 

 
conv_block (2x [Conv, BN, 

ReLU]) 
128 (288, 320, 128)  

 Bloco Dec 4 (decoder_block) 64   

 Conv2DTranspose (2x2) 64 (576, 640, 64)  

 Concatenação - (576, 640, 128) Recebe s1 

 
conv_block (2x [Conv, BN, 

ReLU]) 
64 (576, 640, 64)  

Saída Conv2D (1x1) n_classes (576, 640, n_classes)  

Fonte: Autoria própria. 

 Além da arquitetura, os hiperparâmetros de compilação e treinamento definidos no 

código são sumarizados na Tabela 2. 

Tabela 2 – Hiperparâmetros de Configuração e Compilação do Modelo U-Net. 

Parâmetro Valor Descrição 

Ativação (Camadas Internas) relu Conforme conv_block 

Normalização BatchNormalization Conforme conv_block 

Inicializador de Kernel glorot_uniform (default) Padrão do Keras para Conv2D 

Otimizador Adam Conforme código 

Taxa de Aprendizado 1e-4 Conforme código 

Caso Binário (n_classes=1)   

Função de Perda BinaryCrossentropy Para segmentação binária 
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Parâmetro Valor Descrição 

Ativação de Saída sigmoid Para segmentação binária 

Métrica Principal MeanIoU(num_classes=2) IoU para fundo/frente 

Caso Multiclasse (n_classes > 1)   

Função de Perda CategoricalCrossentropy Para segmentação multiclasse 

Ativação de Saída softmax Para segmentação multiclasse 

Fonte: Autoria própria. 

 FCN-8s: a implementação seguiu a arquitetura clássica, utilizando um backbone 

inspirado na VGG. As camadas densas foram substituídas por convoluções 1 x 1, e a 

segmentação final é refinada pela fusão de predições de três escalas distintas da rede (pool3, 

pool4 e a camada final), combinadas através de operações de Add após o devido upsampling 

com camadas Conv2DTranspose. 

A arquitetura implementada utiliza a VGG16 (include_top=False, 

weights="imagenet") como backbone, conforme detalhado na Tabela 3. A escolha intencional 

pela VGG16, em detrimento de arquiteturas mais leves como a MobileNet, justifica-se pela 

necessidade de estabelecer um comparativo fiel à proposta original da FCN-8s (Long et al., 

2015). O objetivo foi avaliar o desempenho de uma rede densa e com alta capacidade de 

extração de características (VGG16) em contraste com a topologia baseada em encoder-

decoder simétrico da U-Net. Dessa forma, isolam-se as variáveis arquiteturais, utilizando a 

FCN-VGG16 como o padrão-ouro de acurácia (upper bound de capacidade), ainda que à custa 

de maior carga computacional. É assumida uma entrada de (576, 640, 3). 

Tabela 3 – Arquitetura FCN-8s (Backbone VGG16). 

Etapa Camada/Bloco VGG16 Dimensão Saída (H, W, F) Extração (para Decoder) 

Entrada Input (576, 640, 3)  

Backbone block1_pool (288, 320, 64)  

(Encoder) block2_pool (144, 160, 128)  

 block3_pool (72, 80, 256) Salva f3 (Stride 8) 

 block4_pool (36, 40, 512) Salva f4 (Stride 16) 

 block5_pool (18, 20, 512) Salva f5 (Stride 32) 

Decoder Caminho 1 (de f5)   

(Fusão) Conv2D (1x1) em f5 (18, 20, n_classes)  
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Etapa Camada/Bloco VGG16 Dimensão Saída (H, W, F) Extração (para Decoder) 

 Conv2DTranspose (2x2) (36, 40, n_classes) (Upsample x2) 

 Caminho 2 (de f4)   

 Conv2D (1x1) em f4 (36, 40, n_classes)  

 Fusão 1 (f5 + f4)   

 Add() (36, 40, n_classes)  

 Conv2DTranspose (2x2) (72, 80, n_classes) (Upsample x2) 

 Caminho 3 (de f3)   

 Conv2D (1x1) em f3 (72, 80, n_classes)  

 Fusão 2 (f3 + f4 + f5)   

 Add() (72, 80, n_classes)  

 Upsampling Final   

 Conv2DTranspose (8x8) (576, 640, n_classes) (Upsample x8) 

Saída Activation (576, 640, n_classes)  

Fonte: Autoria própria. 

 Os parâmetros de compilação definidos no código para o modelo FCN-8s estão 

sumarizados na Tabela 4. 

Tabela 4 – Hiperparâmetros de Configuração e Compilação do Modelo FCN-8s. 

Parâmetro Valor Descrição 

Backbone VGG16 Pré-treinado (ImageNet), congelado 

Otimizador Adam Conforme código 

Taxa de Aprendizado 1e-4 Conforme código 

Caso Binário (n_classes=1)   

Função de Perda BinaryCrossentropy Para segmentação binária 

Ativação de Saída sigmoid Para segmentação binária 

Métrica Principal MeanIoU(num_classes=2) IoU para fundo/frente 

Caso Multiclasse (n_classes > 1)   

Função de Perda CategoricalCrossentropy Para segmentação multiclasse 

Ativação de Saída softmax Para segmentação multiclasse 

Métricas CategoricalAccuracy, MeanIoU Acurácia e IoU 

Fonte: Autoria própria. 
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4.4.3 Definição da Função de Perda e Otimizador 

 Para ambos os modelos, foi utilizada a função de perda categorical_crossentropy, 

adequada para problemas de classificação multiclasse pixel a pixel. O otimizador escolhido foi 

o Adam, com uma taxa de aprendizado (learning rate) de 1 e -4, conhecido por sua eficiência 

e robustez em problemas de visão computacional. 

4.5 FASE DE EXECUÇÃO E VERIFICAÇÃO (EXECUTE & CHECK) 

 Nesta fase, os modelos foram treinados, e seu desempenho foi sistematicamente 

monitorado, aplicando práticas de MLOps para garantir a rastreabilidade dos experimentos. 

4.5.1 Processo de Treinamento 

 A execução dos experimentos e o treinamento dos modelos foram realizados em uma 

estação de trabalho equipada com processador AMD Ryzen 7 (arquitetura de 8 núcleos físicos e 

16 threads), operando em conjunto com uma unidade de processamento gráfico (GPU) com 

frequência de clock de até 2000 MHz. 

O pipeline de treinamento foi orquestrado pelo script desenvolvido, que implementa um 

ciclo de aprendizado ao longo de 300 épocas.  

4.6 FASE DE ANÁLISE E EXPANSÃO (ANALYZE & EXPAND) 

 Na fase final, os melhores modelos foram avaliados de forma conclusiva, e os resultados 

foram analisados para extrair as conclusões da pesquisa. 

4.6.1 Análise Quantitativa 

 Os checkpoints dos modelos com melhor desempenho foram carregados e avaliados em 

um conjunto de teste nunca visto. As métricas de IoU, Coeficiente de Dice, Acurácia Categórica 

e Perda Final foram calculadas para realizar a comparação objetiva entre a U-Net e a FCN-8s. 

4.6.2 Análise Qualitativa e de Inferência 

 Conforme o script inferencia.py, foi simulado um cenário de implantação. Os modelos 

foram convertidos para o formato TensorFlow Lite (.tflite), uma versão otimizada para 

dispositivos com recursos limitados. A inferência foi executada em um conjunto de 50 imagens 
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de teste, e o tempo de processamento de cada imagem foi cronometrado para estimar o 

desempenho em potencial no hardware-alvo. As máscaras de saída foram visualmente 

inspecionadas para identificar pontos fortes e fracos de cada arquitetura na segmentação de 

diferentes classes, com a opção de mesclar a máscara com a imagem original para melhor 

visualização (Background = True). 



32 

 

 

5 RESULTADOS E ANÁLISES 

 Na Tabela 5 estão sintetizados os resultados dos parâmetros obtidos após os 

treinamentos e validações dos modelos. Para este benchmarking, pensou-se utilizar as variáveis: 

Função de Perda, Coeficiente de Dice, Intersection over Union e a Acurácia Categórica 

(Categorical Accuracy). 

Tabela 5 – Métricas de Avaliação dos Modelos U-Net e FCN-8s. 

Modelo Loss Dice IoU Categorical Accuracy 

U-Net 0,3651 0,8071 0,6838 0,8653 

FCN - 8s 0,3706 0,8319 0,7324 0,8939 

Fonte: Autoria própria. 

 A avaliação comparativa dos modelos U-Net e FCN-8s apresenta variáveis importantes 

do desempenho deles. Conforme apresentado na Tabela 1, a arquitetura FCN-8s demonstrou 

um desempenho superior em diversas métricas de segmentação, alcançando valores de 

Coeficiente de Dice (0,8319), IoU (0,7324) e Acurácia Categórica (0,8939) mais elevados em 

comparação com a U-Net (Dice: 0,8071, IoU: 0,6838, Acurácia Categórica: 0,8653). Por outro 

lado, a U-Net apresentou uma loss ligeiramente menor (0,3651 contra 0,3706 da FCN-8s), o 

que pode indicar um ajuste sutilmente diferente durante o treinamento. 

 Embora os resultados de acurácia favoreçam a FCN-8s, este trabalho reconhece a 

importância crítica da análise de desempenho computacional (como FPS, tamanho do modelo, 

consumo de RAM e, principalmente, a compatibilidade) para aplicações embarcadas. A 

arquitetura FCN-8s, por ser baseada na VGG16 e possuir um decoder mais complexo, apresenta 

alta complexidade computacional. Isso a torna, em seu formato atual, incompatível com 

hardwares de capacidade restrita como a Raspberry Pi 3. Sua implementação prática exigiria 

uma conversão para o formato TensorFlow Lite, com otimizações de quantização. 

Embora as métricas de acurácia, como o coeficiente Dice e IoU, favoreçam ligeiramente 

a arquitetura FCN-8s, a viabilidade de implantação em sistemas embarcados exige uma análise 

rigorosa do custo computacional. A comparação estrutural entre os modelos revela uma 

discrepância significativa: a FCN-8s, fundamentada na densa arquitetura VGG16, possui 

aproximadamente [18.035.704] milhões de parâmetros, resultando em um modelo com 

tamanho estimado de [89+] MB. Em contraste, a U-Net implementada demonstra ser 

substancialmente mais leve, contabilizando [7.691.325] milhões de parâmetros (uma redução 
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de [~44,14]%) e ocupando apenas [22,4] MB em disco. 

A avaliação qualitativa do modelo selecionado é apresentada na Figura 8, que compila 

as máscaras de segmentação geradas pela U-Net sobre o conjunto de validação. A disposição 

das amostras busca demonstrar a robustez da rede frente à complexidade progressiva dos 

cenários: as subfiguras (a) e (b) validam a detecção da geometria básica da Pista em condições 

de iluminação controlada; em (c) e (d), observa-se a capacidade do modelo em distinguir 

texturas de solo, segmentando corretamente áreas de Lama adjacentes ao traçado; os casos (e) 

e (f) evidenciam a identificação de obstáculos dinâmicos (Veículo) mesmo em terrenos 

acidentados; por fim, as amostras (g) e (h) ilustram o cenário de maior entropia, onde a rede 

realiza a segmentação multiclasse simultânea de Lama, Veículo e Pista, confirmando sua 

aptidão para interpretar a sobreposição de elementos típica do ambiente real do Baja SAE. 

Figura 8 – Predições da U-Net Usando as Imagens do Conjunto de Validação. 
a) Pista b) Pista 

  



34 

 

 

c) Lama e pista d) Lama e pista 

  
e) Lama e Veículo f) Lama e Veículo 

  
 

g) Lama, Veículo e Pista h) Lama, Veículo e Pista 

  
Fonte: Adaptado do Baja SAE 2025.  
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5.1 ANÁLISE CRÍTICA E PRÓXIMOS PASSOS 

 Embora as métricas de acurácia favoreçam a arquitetura FCN-8s, a decisão sobre qual 

modelo será embarcado deve considerar também aspectos de desempenho computacional, ainda 

não avaliados diretamente em hardwares como Raspberry Pi. 

Como próximos passos, planeja-se a conversão dos modelos para o formato TensorFlow 

Lite, mais leve e adequado para dispositivos embarcados com restrições de memória e 

processamento. Essa conversão é necessária, uma vez que a Raspberry Pi 4 apresenta limitações 

de compatibilidade com bibliotecas utilizadas na fase de desenvolvimento. 

Além disso, será conduzida a análise prática do desempenho dos modelos no dispositivo 

embarcado, com foco em: 

- tempo de inferência (FPS); 

- uso de RAM durante a execução; 

- tamanho final do modelo (em disco); 

- compatibilidade com otimizações adicionais (como quantização de redes). 

Essas medidas são essenciais para garantir a viabilidade da operação em tempo real nos 

veículos Baja SAE e permitir futuras expansões do sistema de visão computacional. 
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6 CONCLUSÃO 

 O presente trabalho teve como objetivo central desenvolver e avaliar arquiteturas de 

deep learning para segmentação semântica, visando sua futura implementação em um sistema 

de visão computacional embarcado para veículos da competição Baja SAE. 

Para atingir este objetivo, foram implementadas, treinadas e comparadas duas das 

arquiteturas mais influentes na área: a U-Net e a FCN-8s. A análise quantitativa dos resultados, 

apresentada no capítulo anterior, permitiu validar a eficácia de ambas as redes na tarefa de 

segmentação das classes de interesse (pista, obstáculos, pessoas etc.). 

Os resultados demonstraram que, em termos de métricas de acurácia, a arquitetura FCN-

8s apresentou um desempenho superior (IoU: 0,7324; Dice: 0,8319) em comparação com a U-

Net (IoU: 0,6838; Dice: 0,8071) no conjunto de dados utilizado. Este achado sugere que a 

estratégia da FCN-8s, de fundir mapas de características de diferentes escalas (8s, 16s, 32s), foi 

mais eficaz para capturar os detalhes semânticos da cena. 

No entanto, este trabalho também identificou que a acurácia de segmentação é apenas 

uma das variáveis na equação para um sistema embarcado de tempo real. A principal hipótese 

da pesquisa — a viabilidade de execução em tempo real — ainda requer validação prática. 

Conforme discutido, a análise de desempenho computacional (tempo de inferência/FPS, uso de 

RAM, tamanho do modelo) é uma etapa crítica e mandatória que não foi coberta nesta fase do 

projeto. 

Como desdobramento e principal encaminhamento para trabalhos futuros, estabelece-

se a necessidade imediata de converter os modelos treinados (com foco prioritário na FCN-8s, 

devido à sua maior acurácia) para o formato TensorFlow Lite. Esta etapa é essencial para 

otimizar os modelos para dispositivos com restrições de processamento e memória. 

Subsequentemente, deverão ser conduzidos testes rigorosos de inferência no hardware-alvo 

para quantificar o desempenho real.  

A projeção deste trabalho, uma vez superada a etapa de validação em hardware, é de 

grande repercussão para a equipe Baja SAE. A implementação bem-sucedida de um sistema de 

segmentação semântica em tempo real estabelece a fundação técnica para o desenvolvimento 

de sistemas de navegação autônoma, permitindo ao veículo identificar caminhos transitáveis e 

de obstáculos. Este projeto, portanto, não se encerra em si, mas serve como um pilar essencial 

para a próxima geração de sistemas de percepção e controle autônoma. 
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